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ABSTRACT

An efficient finite element model and solution technique have been
developed for the analysis of unrestrained flexible structures undergoing
large elastic deformations coupled with gross nonsteady translational and
rotational motions with respect to an inertial reference frame. The nonli-
near coupled differential equations resulting from the finite element
approximation are integrated timewise using an implicit-explicit split
operator numerical integration scheme which treats the stability sensitive
terms of the equation implicitly while the rest of the equation is treated
explicitly. The motion of simple spacecraft structures consisting of
flexible beams attached to rigid masses and including the effect of control
forces has been studied using three-node eighteen-degree-of-freedom three

dimensional beam elements based on the total Lagrangian description.
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The velocity vector is defined as follows:

* . Au
At+0 at

Substituting eq. (2.10) into eq. (2.11),

. Aq
u= lim N =< (2.12)
ats0 — A
But
g= lin (2.13)
At+0
Thus us=Nq (2.14)
Similarly,
UNarNg=Ng (2.15)
noting that N* q is either zero for solid elements or very small in the
case of beam, plate, or shell elements. ]
2.4 Conservation of Linear Momentum F;ff‘i}
@
If FT is the sum total of applied forces on the body, then conser- B
- SR
vation of linear momentum requires that the following equation be R
satisfied: - }
9 °
d dR d°R o]
a P . dv = o ;E—z- dv = i (2.16) ) Ti':':::‘jj
v v AR
In eq. (2.16), the integral is defined over the original undeformed con- “ '\j
figuration. Substituting the expression for acceleration eq. (2.8) into eq. R
S e
(2.16) and using eqs. (2.14) and (2.15), eq. (2.16) becomes RN
MV +TV)+PTg+Ga+20P q+f. =F (2.17) s
YotV +L 4+G2 LU AP . R
o |
R
e e e e e e e T BRSP




0 -A, A,
where A = As 0 -A (2.7b)

Applying equations (2.7) to equation (2.6), the cross products can be

replaced as follows:

I= 3
+
(ol
I~
+
N
1l
Ic .
+
|

(2.8)

42 . '
dR.yv +3
3l Ty

2.3 Finite Element Expression for Velocity and Acceleration

In the finite element method, the structure being analyzed is divided
into a finite number of sections or elements. Within each element the
exact displacement u is approximated by polynomials containing unknown
constants which generally represent the displacement at a finite number of
points or nodes within the element and on its boundaries. It is these
nodal displacements which are solved for. For time dependent problems,

the displacement u can be written in an incremental form as

us= tg + Au (2.9)

In equation (2.9), EE represents the value of u at time t while Au is the
change in displacement between time t and t + At., In the finite element

formulation the value of Au within each element can be expressed as
au = N* Aq (2.10)

Here Aq is the nodal displacement vector and N* is the matrix of shape
functions and is a function of a set of local coordinates within each ele-

ment as well as the initial angular displacements. The determination of N*

is given in Chapter III.
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In order to express the motion in terms of the rotating body axes, it
is necessary to express the acceleration of point P in terms of body

axis coordinates. Thus the following expression for the acceleration is

used:
2 dv o o .
g--P¥=F—9+L+gx£+2.<zxr~+.rzx(szxr‘) (2.2)
a2 dt - T T T

dv
where 3%2 = the acceleration of the origin of the body axis

i = the velocity of the material point p relative to the body axis
E = the acceleration of the material point P relative to the
body axis
é_x r = the "tangential" acceleration
29 x i = the Coriolis acceleration
2 x (2 x r) = the centripetal acceleration

In terms of the body axis coordinates,

dv .

0 _

T -V taxy (2.3)
Also note that since r, =r =0,

£=£ (2.4)

T=u (2.5)
Substituting equations (2.3) - (2.5) into equation (2.2),

dzR_; . .o . .

—==Vo+axV +u+raxr+2axu+tax(egxr) (2.6)

dt 2
In order to simplify equation (2.6) a bit, the cross products can be
replaced by matrix products. If A and B are any 3-vectors, then

AxB=%8 (2.7)
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.....................................................
......................

............
...............................
..............................




D I AP ARSI Ay N o ) S JP S e Sl S Bl S AN N S M S - A e SV L S L I A A AN S AR A T " Jrand ———
N ST T e . R P R

CHAPTER I1

EQUATIONS OF MOTION

2.1 Introduction

For elastic structures undergoing gross translational and angular
motion as well as small or large elastic deformations the motion can be
described by the following three sets of equations:

1. The conservation of linear momentum which is a vector equation

describing the gross translational motion,

2. The conservation of angular momentum which is a vector equation

describing the gross rotational motion.

3. The principle of virtual work which describes the deformations.
If the structure is very flexible, the deformed configuration may be quite
different from the original undeformed configuration. Thus the elastic
deformations will be coupled with the gross translations and rotations,

especially if the applied loads are deformation or velocity dependent.

2.2 Geometry and Kinematics

Consider the deformable body pictured in Fig. 1. A set of mutually
orthogonal axes, X1s Xos and x4 are fixed in the undeformed body at point 0.
Point 0 is located a distance 30 from a set of mutually orthogonal inertial 6
axes X], XZ’ X3, centered at point C. The body axes are translating with A
velocity !o and rotating with angular velocity o relative to the inertial
axes. A point P located a distance P, from 0 displaces by u to point P' as ji‘.
the body deforms so that it is now a distance r from 0. Point P’ is

located a distance R from C where R is as follows:

+r +u (2.1)

o
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flexible structures which are undergoing large elastic deformations coupled
with gross nonsteady rigid body translational and rotational motions with
respect to an inertial reference.

The formation and solution scheme used for this research can be
briefly described as follows. The governing equations of motion are
derived using momentum conservation principles and the principle of virtual
work. The finite element approximation is applied to the equations of
motion and a matrix form of those equations is obtained. The resulting set
of second order matrix differential equations is solved timewise by direct
numerical time integration using an implicit-explicit split operator
scheme. This scheme treats the terms which control the stability of the
solution implicitly while the terms which are less sensitive to stability
are treated explicitly. The solution technique developed is tested on
simple spacecraft consisting of long slender uniform beams attached to a
rigid mass and modeled by three dimensiona! eam elements., The effects of

control forces on the motion of the spacecraft are also considered.

LI
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not the associated modal generalized forces vanish identically. McDonough 3
" 9
[3] considered the formulation of the global equations of motion of an ,35
unrestrained deformable body using translating and rotating reference -;*‘I

frames. The motion of the body (including deformations) is of unrestricted
magnitude in the analysis. Fraejis de Veubeke [4] considered the motion of

a flexible body undergoing arbitrarily large rotations with respect to an

inertial frame. The motion was split into a mean rigid body motion and a
relative motion taking into account the deformtions. This mean rigid body
motion is chosen so as to minimize the mean square of relative displace- "
ments. Kane and Levinson [5,6] considered different methods for for-
mulating the equations of motion for complex flexible spacecraft. These
methods included momentum principles, D'Alembert's Principle, and ‘_‘
Lagrange's equations, among others. They also developed an algorithm for |

producing numerical simulations of large motions of a nonuniform flexible

cantilever beam in orbit using the finite element method. Santini |7 has ;‘;a:f
studied the stability of both nonspinning and spinning flexible spacecraft )
in a gravitational field by the superposition of a rigid motion plus a com-
bination of structural modes. Other investigtors [8-17] have also studied ‘i;?;~4
these types of problems using both general analyses or in connection with ;:f;:fiﬁ
more specific types of flexible spacecraft. It appears however that, in
spite of the progress made in the analysis of such problems, little :;;:
attention has been paid to the development of the finite element method B
for the dynamics of unrestrained structures undergoing large elastic defor- ;f;f5§7§
mations coupled with nonsteady gross translational and rotational motions. |
With these problems in mind, the objective of this research is to use

the finite element method to determine the time response of unrestrained




CHAPTER 1
INTRODUCTION

In order to predict the motion of many types of flexible spacecraft,
it is necessary to accurately simulate the time response of an unrestrained

structure which is undergoing large elastic deformations as well as gross

nonsteady rigid body translations and rotations. For such structures, the
large elastic deformations are coupled with the rigid body motions

resulting in a complicated set of nonlinear differential equations. Such ‘® _

spacecraft may be simple enough to be modeled as rigid bodies supporting
flexible beams or they may be more complicated structures consisting of
frames, plates and shells in combination with one or more rigid bodies.
For example, consider a large space structure consisting of a frame made up
of long, slender, flexible beams connected to one or more rigid masses. If
such a spacecraft were to execute a sudden rotational maneuver or reorien-
tation, then large elastic deformations coupled with rigid body motion
would occur. An accurate time response analysis of the motion of the
structure would be necessary in order to predict the orientation of the
structure especially if it were necessary %o determine the pointing
accuracy of any sensors which may be attached to the spacecraft.

Extensive research has been done in the field of the dynamics of
flexible spacecraft. The motion of unrestrained flexible structures has

been discussed by Bisplinghoff and Ashley [1]) who considered small vibra-

tions of aircraft structures using a modal technique. Ashley [2] also

studied gravitational excitation of very simple elastic spacecraft under

the restriction of infinitesimal elastic displacements as well as cate-

gorizing typical free-free structural configurations according to whether or '.

............
...................
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[ A vector the components of which are the time integrals of g
¥,0,% Euler angles

! Body axis angular velocity

w Circular frequency

wy Damped natural frequency

Wnax Maximum natural frequency

, A reference angular velocity
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Initial displacement of the a,,a3,,a; axes
Volume of the undeformed body

Body axis velocity

Velocity of the beam tip

Body axis coordinates

Inertial axis coordinates

The a,,3,,3; axis coordinates

A factor used in computing orientation angles

Shear factor

A factor used in computing orientation angles

The angle between the orbital radius vector and the X axis

A scalar constant
Angle between angular velocity vector and Xy axis

Variational operator

Linear portion of incremental Green strain vector
Local aAe vector

Nonlinear portion of incremental Green strain vector
Local aAn vector

Orientation angles

Space-three: 1-2-3 angles

Initial Value of 8,

Incremental change in ei

A reference orientation angle

Precession rate

Gravitational gradient damping parameter
Gravitational constant of the Earth

The normalized local coordinates along the beam axis
Damping constant

Mass density

.
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r Body axis position vector of a material point at time t
Bo Inertial position vector of the body axis origin
: (A Body axis position vector of a material point at time t = 0
[ Instantaneous center of mass location in body axis coordinates
ok r Position vector of a point in the cross section of the unde-
P formed beam in terms of the a,,a,,a, axes
- r Position vector of a point in the cross section of the defor-
: P med beam in terms of the gi,gé,gé axes.,
rr Position vector of the beam tip
; S Second Pyola-Kirchhoff stress vector
AS Incremental Pyola-Kirchhoff stress vector
05 Initial Pyola-Kirchhoff stress vector
'," _S_z Local Pyola-Kirchhoff stress vector
°_S_E Local initial Pyola-Kirchhoff stress vector
°§°.°_S_y,°Sz The constant, y, and z components of °s
? Sa Portion of the body surface over which tractions are applied
. t Time
L T Transformation matrix between the local and global
" coordinates
_ hi Applied surface force vector
at Time step increment .
oM Time period during which a moment is applied ;
3 )
: t, Time at state n W
T, A time period f":f:.jﬁ;i;ii
. Tol Convergence tolerance T
L 1
u Displacement of a material point o
Oy Initial displacement vector RN
s Incremental displacement vector Sl
. L 1
Y, Displacement of the 2},25,35 axes e
lji-.i
L
xiii L
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NN N2

Moment due to centrifugal force
Moment due to the centrifugal force acting on the rigid mass

Moment due to the Coriolis force

Generalized mass matrix
Applied moment due to the gravitational gradient

Mass of the rigid mass
Total of applied moments about the inertial axes

A vector representing the right hand side of the momentum
equation

Total of applied moment about the body axes
The constant, y, and z components of the mass matrix

A matrix relating the angular velocities to the time deriva-
tives of the orientation angles

Total number of elements
Refers to the state of the body at t = t_
Matrix of shape functions

The constant, y, and z components of the shape function
matrix

Gravity gradient frequency

Matrix coupling the nodal acceleration with the body axis
acceleration

Matrix of initial stresses

The constant, y, and z components of the Bs matrix

A submatrix of P

Nodal displacement vector

Incremental nodal displacement vector
Initial nodal displacement vector -
Generalized nodal displacement vector

Predicted value of generalized nodal displacements

Inertial position vector of a material point at time t =




Shear modulus

1

Matrix of the instantaneous center of mass of the body

H Coupling inertia matrix between the nodal acceleration and o
the angular acceleration of the body axes

Ha Angular momentum vector

Hy Angular momentum due to the displacements of the beam

The value of ﬂD at t = T0
The jEﬂ Gaussian integration point weighting factor
Parameters used in calculating the D_ matrix

Mass moment of inertia of the beam

Mass moment of inertia of the rigid body

Instantaneous mass moment of inertia matrix
Undeformed beam element area moments of inertia
The 3 x 3 identity matrix

Jacobian Matrix

Basic stiffness matrix

Total elastic stiffness matrix

Generalized stiffness matrix

Effective stiffness matrix
Initial stress stiffness matrix

Control force constants

Beam element length i}
Control constant i;}f
Element of the Jacobian matrix o
Parameters used in calculating the D_ matrix -fﬁ
Total mass of the body ;i;
Mass matrix -
0 _
Control constant o
.

..............................
.......................................

L P P T e T ST LT SN S T ST
e TS L e T T e LT e g e T e e e




D

A—h
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The matrix relating the Ae vector to the derivatives of the
incremental displacements

The constant, y, and z components of the Ee matrix
Young's modulus
Green strain vector

The 1’.]'3—'l Component of the Green strain tensor

Green strain vector at state i
Incremental change in the Green strain vector

Incremental change in ijﬁﬂ component of the Green strain

tensor

The virtual Green strain vector

The ijﬁﬂ component of the virtual Green strain tensor
The local Green strain vector

Applied body and inertial force vector

Nodal applied body force vector

Applied body force term excluding inertia terms

Force vector in displacement equation due to centripetal
acceleration

Applied control force

Force vector in linear momentum equation due to the centripe-
tal acceleration

Generalized force vector
Effective force vector

A vector representing the right hand side of the displacement
equation

Initial stress force vector
Vector of applied forces

A vector representing the right hand side of the linear
momentum equation

Vector of applied nodal forces
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LIST OF SYMBOLS

Undeformed beam element cross-sectional area
The iEﬂ gaussian integration point
Higher order terms in the virtual work integral

The matrix which relates the derivatives of the displacements
to the nodal displacement vector

The constant, y and z components of the A matrix

A set of mutually orthogonal axes fixed in the undeformed
beam

A set of mutually orthogonal axes fixed in the deformed beam
The values of a;,a),a; for state i

Matrix which relates the incremental nodal displacements with
the incremental strains

The ith component of the B matrix
The local B matrix

Matrix which relates the incremental nodal displacements to
the initial stresses

The 1£ﬂ component of the B, matrix
The local B, matrix

The gyroscopic matrix
The material property matrix

The constant, y and z components of the gyroscopic matrix

The local material property matrix

Direction cosine matrix

The y component of the matrix of orientation angles

A vector the components of which are the time integrals of ¥V,
The kﬁn partition of the A matrix

The constant, y, and z components of the Qk matrix
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where
M= ‘/fp dv = Total mass of body (2.18)
v
T N
P =z p N* dv (2.19)
i=]
Vi
G = - /p‘jav (2.20)
v
_f_c=§2 [pLdV (2.21)

The nodal accelerations .S.. are coupled with the translation of the body
axes and the P matrix represents the mass of the finite elements in the
coupling terms. Note that P is the summation or assembly over all N finite
elements. The elements of the G matrix represent the location of the
instantaneous center of mass. The f_ vector is the force due to the
centripetal acceleration. Details of the P, G, and ic matrices are given
in Appendix C. Rewriting eq. (2.18) with all the acceleration terms

grouped together results in the following:

T+ g

a+ My =t (2.22)
where

fr=F

f1=Fp- (2.23)

2.5 Conservation of Angular Momentum

If !J is the sum total of the applied moments about the inertial axes,
then the conservation of angular momentum requires that the following

equation be satisfied:

.............................................................




p——

gf f(B.XS%) dv = fo(&x:—j%) dv = M (2.24)

v v

Substituting eq. (2.1) into eq. (2.24) and using eq. (2.16), eq. (2.24)

becomes

d%R
Mp =R, xE;+ fp(g X —:2-) dv (2.25)

But the applied moment about the inertal axes can also be written in the

following form:
MT = ﬂo + Bo X E.T (2.26)

Here ﬁo represents the applied moment about the body axes. Thus equation
(2.25) reduces to

( a2 (
M. = p (r x =) dv 2.27)
=0 dt 2

v

Now, substituting eq. (2.8) for the accelerations into eq. (2.27), and

using eqs. (2.18) - (2.21), eq. (2.27) becomes as follows:

T L]

- T= - .
ﬂo = g !0 + g -‘3.!0 + ﬂ g-+ lT &+ !Cor + ﬁcent (2'28)
where
Iy = - fpzz dv (2.29)
v

1 N -~

H' = £ p T N* dv (2.30)
- j=l ==
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. =52
eent f PLE rdv

T

(2.31)

(2.32)

The lJ matrix represents the instantaneous moment of inertia matrix of
the entire structure. The H' matrix represents the distributed moment of

inertia matrix of the finite elements and when multipled by the nodal acce-

leration vector'a provides the coupling term between the rotary inertia due

to the elastic displacements and the rotation of the body axes. The M

—cor

and !cent vectors represent moments due to the Coriolis and centrifugal
forces respectively. Details of 11, H, !cor and !cent are provided in

Appendix C. Expressing eq. (2.28) in a form similar to

in the following:

TarIra+ ey, =,

- =0

H

where

M

Mr=M =62V, -Mor - Ment

0

2.6 Principle of Virtual Work

The principle of virtual work is used to describe t
cements of the structure. Using tensor notation, the pr
work for a solid body undergoing large deformations can

follows:

[§:6_E_dv- [f.é_u_dv- [I.ngs
v S

v

[+

eq. (2.23) results

(2.33)

(2.34)

he elastic displa-
inciple of virtual

be written as

0 (2.35)

- L
.,'.’ . .o
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The first integral represents the virtual work done by the internal forces
where S is the second Pyola-Kirchhoff stress tensor and ¢E is the virtual
Green strain tensor, The second integral represents the virtual work done
by the body force F. The virtual displacement is represented by éu. The
third integral represents the virtual work done by the applied surface
tractions T. The portion of the surface over which the tractions are
applied is So.

Now, consider the second integral in eq. (2.35). The body forces

acting on the body are as follows:

42
F=-pd_&

= dt?

+ By (2.36)

The first term represents the inertia force while Eb represents any other

liif applied body forces such as gravity. If eq. (2.36) is substituted into eq.
. (2.35) and if eqs. (2.8), (2.10), (2.18), (2.15), (2.18) - (2.21), and
fl_“ (2.29) - (2.32) are used, then the second integral in eq. (2.35) becomes as _
» follows for a single element: i
T (1] . . . - .'.
-fﬁ- éudv = 6q (M +ﬁg_+£!o+gg+££!0+fc-£3) (2.37) R
v | S
where S
M= [ o NT N dv (2.38) R
v ., »
L= / o wT T N av (2.39) R
- . ::-t_w
v L
-EC = 0 !* i) (E-O + 9.) dv (2.40) : '..v::
v -
:-fj]
L
n !

...............
.......................

..................
..........




Fg = f T E v (2.41)

Note that M is the usual consistent mass matrix. The C matrix is the

gyroscopic matrix which is skew-symmetric and represents the contribution
of the Coriolis acceleration to the inertia force. The F. vector is the
force vector due to the centrifugal force. Finally, EB is the applied force
term due to gravity. Details of eqs. (2.38)-(2.41) are given in Appendix
D. In addition, the volume integrals are evaluated over the original unde-
formed volume.

The third integral in eq. (2.35) is treated in the standard fashion

for finite elements.

[ T ouds=6q F, (2.42)

S

g

Here fo is the vector of applied forces at the nodes which result from the

applied tractions.

2.6.1 The Elastic Stiffness Matrix

The application of the finite element approximation and a trapezoidal
rule integration to the first integral in the principle of virtual work
leads to a system of nonlinear equations that can be solved by
Newton-Raphson iteration, With this iteration in mind, the displacements
u, the second Pyola-Kirchhoff stress and the Green strain tensor E are

written in incremental form as

u = °£+ Ay (2.43a) Tl
S = ?§ + S (2.43b) é. »;
E=C°E+ AE (2.43c) -
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where u = Displacement vector at state i
°§ = Second Pyola-Kirchoff stress vector at state i
°§ = Green strain vector at state i
Au = Incremental change in u between states i and i + 1
tS = Incremental change in S between states iand i +1
AE = Incremental change in E between states iand i + 1

th

Note that i refers to the i iteration in the Newton-Raphson iteration.

Substituting eq. (2.43) into the first integral in eq. (2.35),

f6§T§dV=f6_E_T°_S_dv+[6_E_TA§dV (2.44)
v

The constitutive law may be written as

aS = C AE (2.45)
where C = Material property matrix
The material property matrix C may in general depend upon state n. All the
materials considered here, however, are linearly elastic which results in
the C matrix being constant.

Substituting eq. (2.45) into eq. (2.44),

fsﬂ_s_awf5§°§dv+fe£T£A§dv (2.46)
v v v

Now, using tensor notation, the Green strain tensor can be written as:

au. au. du, du

_ i J k "7k
EiJ =zl t K. T I, ax.) (2.47)
J 1 1 J
adu, aéu, du, adu du, 38u
=) i iy Tk % Tk Nk
also sEij =7 (§XJ + axi + aXi an + axj X ) (2.48)
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and uj = °u1 + u (2.49)

Substituting equation (2.49) into equations (2.47) and (2.48) results in

- o n
(o] o] o} o
3 u, 9 u, 3 u 9
[ - 1 1 J K uk
where  “Ei5 =7 =yt . * e, ) (2.52)
J i i Jj
o] o
T
b2 i i i
(o] (o]
R L L
b2 ¥y i i 2 i
dAu  3Au
=Lk _ kK (2.56)

3
:

Bnij =y ® (agurk a::k + ai:k a::k) (2.57)

2 i % i .
- b
Note that an;, is quadratic in Au;. Now, substituting equations (2.51) and {1%];};
SRS
(2.53) into equation (2.46) and using matrix notation results in RCURN
.‘. .
f GET Sdv = / GET C Ag dv +[ GHTOS_ dv + f5£T°_s_ dv + A, %;1:;'-\112-;

v v v v °

(2.58) T
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where An = Higher order terms, i.e., terms nonlinear in Au.

2.6.2 Finite Element Approximation

The finite element approximation to the incremental displacements bet-

ween iteration steps i and i + 1 is as follows:

au = N* Aq (2.59)
where N* = Shape function matrix dependent upon state i
Aq = Nodal displacement between states i and i + 1

The virtual displacement 8u can thus be expressed as follows:
su = N* &q (2.60)

Also, as will be shown in Chapter 3, it is possible to express the incre-

mental strains Ae within each element as follows:

ae = B Aq (2.61)
Also, e = B &q (2.62)
where AT = Laeyy Bey, Aegy 28e), 28cy 28¢y5] (2.63)

In addition, it will be shown that

6n'°s = og' B 4g (2.64) T
If equations (2.61) - (2.64) are substituted into the integrals on the e
o
right-hand side of equation (2.58), these integrals, when taken over the Lo
volume of the ith element become:
T T [T T . ®
s¢ Cacdv= 8g (/] B CBdv) ag=268q K; aq (2.65) RRAREN




DM R Al T Pt P S as ACR I IS e Sen St At A I U M, Sv SA0 UG cu D s ned e sm e der e e e A e S

[ G_QT °§_ dv ng (f B dv) Aq = Gq_T Esi aq (2.66)

v v;
[ 6 £° dv = 6q' (f B1° dv) = sq Ee, (2.67)
vj v
where 51. =/ _T C B dv = element basic stiffness matrix (2.68)
v

Esi = f B, dV = element initial stress stiffness matrix (2.69)

Fs- =f BT°S dvV = element initial stress force vector (2.70)
s 2 2

Thus, if the higher order terms An are neglected, the virtual work

expression, equation (2.58), becomes when summed over all N elements,

[65T§ av =
1

v

ne~M2Z

: sq[(K; + Ksi) 895 * Eg;l (2.71)

Assembling the elements in the usual way,

f 6§_T_S_ dv = GgT (Kg 89 + Fo) (2.72) "

v [REREAR
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where EE =K+ 58 = Total global elastic stiffness matrix (2.73)

-n
]

Fg = Global initial stress force vector (2.74)

Finally, by using eqs. (2.71), (2.42), and (2.37), the virtual work

expression can now be written as follows:

Mag+Ha+PV, +Lg+K a9k, (2.75)

where Eq = .F.o + .EB - .Ec - ..Es - BE!O (2.76)

Thus, Eq. (2.75), (2.33) and (2.22) are the three sets of nonlinear coupled

equations of motion for the unrestrained system shown in Fig. 1.

The next section developes the element stiffness matrices and initial

stress force vector for the three node, 18 degree of freedom beam element,

L.' DN NPT

o o .
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CHAPTER II1

DEVELOPMENT OF THE STIFFNESS MATRIX FOR THE THREE NODE BEAM ELEMENT

3.1 The Three Node 18 Degree-of-Freedom Beam Element Geometry

In Figure 2 is shown a section of the beam both before and after
deformation. It is assumed that during the large deflection that there can
be large rotations but that the strains remain small. Also, it is assumed
that there is no warping of the cross section, i.e., plane sections remain

plane., The following quantities are then defined:

31s 3, 33 - a set of mutually orthogonal axes in the undeformed
beam, centered at point 0 with 1) tangent to the
reference line (beam axis)
aj, 35, a3 - a set of mutual orthogonal axes in the deformed beam v i
.® 4
centered at 0' with a, and gé lying in the deformed ;
cross-sectional plane ;
- S
X = Position vector of point 0 e e
20 ® ~T
X = 50 + :p = Position vector of a general point P in 8
the plane of the cross-section >' ;
U, = Displacement of point 0 ?
= o
u = Displacement of point P ) ]
Note that both gé and gé as well as 3 and 33 remain in the cross-sectional
plane because of the assumption that plane sections remain plane. Thus gi, .0_ -

35, and a5 represents the orientation of the a,, a,, ay axes after their

rotation due to the deformations,

From the geometry in Figure 2, o

Urlug - o, (3.1) RN

................................................................................
..........................................................
...........................................

.................................................
.............




Next, define a local coordinate system, x, y, z, such that x, y, and z are

the 2 22, and a, coordinates respectively. Thus,

TV H Yy (3.2) s
and X=X+ [ (3.3) ;
Also, because the cross section only translates and rotates (and doesn't h"“‘
distort),
[ ] 1
Fp=ya,+za (3.4) .
[
Substituting equations (3.2) and (3.4) into equation (3.1) yields, :
= ' - ] - -
u=u,+(a;-2,) y+ (a3 -2z (3.5) LN
In the Total Lagrangian description all variables are referred to the ori- S
ginal undeformed configuration. Thus, it is necessary to determine gé and ;””;;*d
.0
gé in terms of 2, 2 and a,. In order to do that, a way of describing the )

2 3 RS
rotations must be found. There are many well known ways of doing this,

probably the best known way being Euler angles (Fig. 3a). Another way of
doing this is by using space-three or body-three angles (Figs. 3b, 3c)
[34]. In the space-three 1-2-3 description, a,, 3, and a5 are rotated suc-
cessively about three separate axes as follows:
1. First, rotate by an amount 8, about the original a, axis.
2. Next, rotate the new configuration 6, about the original a, axis. f.'ij?ﬂ
3. Finally, rotate the last configuration 83 about the original a3
axis.
The body-three 1-2-3 sequence is similar except that instead of rotating

about the original axes, the rotation is about the body axes. It is also
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possible to use sequences other than 1-2-3, for example, a space-three
2-3-1, or body-three 1-3-2 or any sequence which results in the required
orientation is possible. In the case of a 1-2-1 or 3-1-3 sequence or any
sequence in which there is a rotation about only two axes, the rotation
would be referred to as a space-two or body-two rotation., Note that the
Euler angles correspond to a body-two 3-1-3 rotation,

For the purpose of this research, the space-three 1-2-3 rotation
sequence was chosen to describe the rotations because it seemed the most
straight forward and because none of the others offered any particular
advantages over it.

Once a method for describing the rotations is chosen, the relationship
30 33
1-2-3, this is as follows:

between Ej’ andlgl, a., a, can be determined. For the space-three

=2’ =3

3} = c0SB, C0SB4 3; + COSH, Sind; 3, - sind, 3, (3.6a)

a, = (sine] sine2 Cos63 - sine3 cose]) at (sine] sin92 sine3

+ Cos6, cose]) a

2, (3.6b)

+ sing, cose, ag

33 = (cose, sing, cose, + sing, s1ne]) a+ (cose] sine, sine

2 3 3

- Coso, s1nel) a

a, + cose] cose2 23 (3.6c¢)

Next, the displacements and rotations are written in incremental form

u="C +au (3.7)
_ o

Ug = Uy * bug (3.8)

8, = %8 + 86, k =1,2,3 (3.9)

20
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If equations (3.6), (3.8) and (3.9) are substituted into equation (3.5)

and higher order terms are neglected then the following results:

0, = © o 0 ot _
u="u,*ty (°a, -3, +2z (%, - a,) (3.10)
Au=au +(yD+zE)as (3.11)
oL _ ' ) ] o R

where 3 = a; ( 8> 62, 63) i=1,2,3
a0 = LA, A8, A8,]
- 1 2 3
= o o o

9 _D_( e]a 929 63)
E=E(°0), %6y, %0y

The elements of the 3 x 3 matrices D and E as well as expressions for

°2% - 3, i =2,3 are given in Appendix A.

3.2 Finite Element Approximation

The three node eighteen degree of freedom element is pictured in
Figure 4. The local coordinates &, y, z are normalized such that the ori-
gin is at the center and the & coordinate varies between -1 at one end of 7‘rl&“i
the beam and +1 at the other end. The transformation between the global |

coordinates and the local coordinates is thus as follows:

3 [ )
= 4
X = ifl N;(¢€) 501 tya,tza, (3.12) )
Here 101 are the coordinates of the three nodes and Ni(a) are the shape S
® d
functions which are
Ny (&) =-;-£ (g - 1) (3.13a)
Ny(g) =1 - g2 (3.13b) o |
R
®

N
-
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Thus the integral is first evaluated over the original cross-sectional area
of the undeformed beam element Ai and then along its length 21. Next, eq.
(3.83) is substituted into eq. (3.85) and the various matrix products and
area integrals carried out. It is assumed that the longitudinal axis of the
beam is through its centroid and that the cross section is symmetric. The

following equation then results:

- T o2 o2 8T oL Rl T ~L 2
ks [[A (BT ¢ By + 1, (BNT '8 + 1, (BT c* 8} 4o (3.86)

%
where A= j[— dA (3.87)
I =f y? dA (3.88)
zZ
A;
- 2
Iy [ z2 dA (3.89)
A

Note that A, I

22° and Iyy are merely the area and area moments of inertia

of the beam cross-section. The integration along the length of the beam is

done numerically using Gaussian integration [28]:

| =
[[]
nmM™M3
iy
—
>
—
(e v]
Pl
~—
—_
o
o
(-]
+
P—t
—
w
P
g
—
o
Py
(o]
=
+
—

L [}
T
1 -0/ < =0 zz =V =2 2 vy (52) ¢ EZ] Ii'}g=aj Hj

(3.90)

The aj are the Gaussian integration points and HJ represents the weighting

factors while n is the number of integration points used. Since the

35
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For an isotropic material, the local 3 x 3 matrix of material properties is

then
E o o |
¢t =[o s o (3.81)
0 0 &6

Here E is the Young's modulus of the material, G is the shear modulus, and
B is the shear correction factor. For an isotropic material with rec-

tangular cross section, B is equal to 5/6.

3.7 Calculation of the Stiffness Matrix and Initial Stress Force Vector

It is now possible to calculate the element stiffness matrices and
initial stress force vector as given by eqs. (3.46) - (3.49). First, note

that the local B matrices are formed via eqs. (3.44) as follows:

Bi=18., 1=0,,2 (3.82)
2 _ nt 2 2
Thus B =B,+yB+zB, (3.83)

Also note that before the‘gS matrices can be formed, it is necessary to

transform the stresses from the local coordinates using eq. (3.40):

°s = 17 °s* (3.84)

The_PSi matrices can then be formed using the elements of the °§_vector
from which in turn the Esi matrices can be formed. To calculate the stiff-
ness matrix, first note that the volume integral in eq. (3.46) can be writ-

ten as follows:

K; =[ (847 c* 8% av - [ f 89T c*B* dA de  (3.85)
A

(K % i

—— T

YL

f
‘» T
Y]

P
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(o]

along its length. Thus, in a manner analogous to eq. (3.70), the §0
vector can be written as
A
o]
S=°5,+y %, +2°%, (3.77)
also,
Bs =B, * y_P_Sy tzP (3.78) .
Finally, if eqs. (3.59) and (3.78) are substituted into eq. (3.76) and the
matrix products carried out, the following expression for Es results:
B. =B, +yB.. +2zB. +yzB. +y2B. +2z°B (3.79) ’
=s T Zsg Y Is) T EIsp TYEZs3 T 2 =s5 y
_ AT
where ESO = _Ao -P-So Ao (3.793)
B, =AP. A +A P A +A P A (3.79b) '
=$] =y =Sp =0 =0-Sy —0 =0 —Sg —¥ :
_ a7 T T
_B.52 - ’_\z ESO ‘.\o + .A.o Esz .Eo + ﬂo Bso Az (3.79c¢) .-
B, = A(P. A+P_A) + AL(P. A+P_ A) + AL(P. A+P_ A )  (3.79d) '
—S$3  —0'=Sy—Z —Sz=y —y '=Sg=Z —Sz-0 —2'-Sg-y =Sg-Z ' e
T T T B
ES4 - Ay ESO Ay + Ao Ksy A_y + Ay f.sy ;A.o (3.79e) = =
B. =Al P A +A P A +A P A (3.79f) '
~S§ T 2Z =Sg ~Z =0 =S; ~Z —Z =S;—0 *
3.6 The Material Property Matrix
»

The material property matrix C will in general depend upon the state T
of the structure and as such it is a function of time. A1l of the f,ﬁj};
materials considered here, however, are linearly elastic which results in ‘f':'i

’ ;
the C matrix being constant. The form of the local incremental stress :
strain relation is as follows: i

ast = ¢* act (3.80) »

R

.
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B, (3.70)

Next it is necessary to determine the form of the Es matrix. From eq.

(2.67),

6n'°s = 6q' B, Aq (3.71)

Using the expression for &n given in eq. (2.57) it is possible to show that

the following is true:
A
6n'°s = {12%}’ L {—3-5%1 (3.72)
where Lo
— N . ® 1
po 0 0 Ah.'_'.
[ o p, 0 (3.73) i
0 0 P e i
L - = =0 .o ]
o} o] o]
S S12 %13 RRSKS
o o o IR
Bo = Slz 522 523 ( 3 . 74) .'4'.....4'.-:»;4'
. ]
o (o] (o]
513 S3 0 333
Thus, using eqs. (3.58) and (3.63), eq. (3.72) can be written as
®
6n'°s = 60 Al P A ag (3.75) T
or B, = AT P_ A (3.76) .
=s 2 s 2 ' L]
Since the incremental stresses at each step are calculated by using the ;i3g}2f
constitutive law eq. (2.45) and are dependent upon the strains Ae, it 3;{* ]
follows that °§_will vary over the cross section of the beam as well as :fri 7‘
L ‘_\
;!‘fﬁf
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N;(g) (%23 - a3); (3.66)

Using eqs. (3.64) - (3.66) as well as eq. (3.52), the elements of the

expanded ge matrix can be obtained.

B, =D.,*V Dey tzD,, (3.67)

The terms of Eeo, gey and Qez are given in detail in Appendix B.
Now we are prepared to calculate the B matrix given in eqs. (2.61) and

(2.62). Substitute eqs. (3.58), (3.59), and (3.67) into eq. (3.50) and

perform the matrix multiplications to obtain the following:

Ae = B Ag (3.68)
where B = B +¥§1+Z§2+y2§3+y2§4+22§5 (3.69)
By = Qeo A (3.69a)
Br =D, Ao+ Dy Ay (3.69p)
B2 =0, A+ D A (3.69¢)
B3 =0, A +D A (3.69d)
By = Qey Ay (3.69¢e)
B =D, A, (3.69f)

Because they are fairly insignificnt and add unnecessarily to the
complexity of the stiffness matrix, the higher order terms yz B3, y? By and

22 ES are neglected. Thus the B matrix can be written as follows:

.....................................
..............................
...............

...........




LA MR B EPR AR Serhsh S rite MR Al sadh Jath. Suth Jadb B A S e SV Aidh Al A S T A A AR i S S e Rt

g Dﬂ
- -0
and A = | g7 A (3.60)
o L =0 .
-1 3
J [
b -l
- ] -
- 1
S
A, - g] 2)3, (3.61)
J Dy
= 1]
J b,
o 2
A, =1 8 D; (3.62)
-1 3
J Dy
e -

It should also be noted that an expression similar to eq. (3.58) holds for
{284}, Thus,
2X

(2%} = A sq (3.63)

The next thing needed to do is to determine the elements of the QE matrix,
o]
This will require the evaluation of derivatives like-ﬁg%. These terms can

be determined by first differentiating the expression for °u given in Eq. "‘:"iq

- . -
(3.14) as follows: ;
o 3 3N, 3 N, SR
3—2 = ._—1_ ° _1- %3 - %! - - “.. N ‘-‘—4
% o e fop T L T [y ("2 - 35) + z (a3 - 23);1(3.64) ]
.9 .
. ‘ 1
o 3 R
u = Oq1 - " )
ay -5 Ne) (35 - 3,), (3.69) o ]




The next step in the derivation is to express the vector of derivatives
{2%§} in terms of the nodal displacements Aq. This can be done by differen-
tiating the expression for the finite element approximation to Au given in

eq. (3.15).

3du 3 aN, 3 aN,
— = L —8u  + I — (y D; +ZE,) ag. (3.53)
e =1 OF 04 =1 96 i i i
a3
~5y = ifl Ni(£)<gi A8, (3.54)
dAu 3 = o]
=z 75 Nile) By ey (3.55) ]
é,_;.vl, J
Lo
By using eqs. (3.53) - (3.55) as well as eq. (3.24), it now becomes S
aAu Lo
possible to write {-3;} as follows:
~ -
o'
asu a2
f=xt =14 D) Aq (3.56)
ot
K K k K, o\ _ "
where D* =D, () +vy Qy (g) +z D, (g); k=1,2,3 (3.57) _
‘ o
The elements of D" are composed of the elements from the D; and E, T

matrices, as well as terms from the shape functions Ni and their deriva-

K matrix is given in appendix B. SR

tives. The exact composition of the D

Equation (3.56) can be rewritten as follows:

atu S
faxt=ABg (3.58) B

- o ]

-

where A=A +yA +zA (3.59) .foS §f
ST

- W . 1.]

e

29 S
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L ‘f (8%)7°s* av (3.49)

Vi

3.5 Calculation of the B and ES Matrices

The calculation of the E.a"d.ﬁs matrices used in the integrals of

equations (3.46) - (3.49) is now considered. The incremental strain Be;

J
given in eq. (2.59), when written in vector form as in eq. (2.66),
can be expressed as the following matrix product:
aau
bg = D {—x! (3.50)
oo g e e e
= 1 2 3 1 2 3 1 2 3
a°u] a°u2 a°u3
1 + TXI 0 0 —3XT 0 0 axl 0 0
a°u] a°u2 a°u3
0 "§XE 0 0 1 + ax2 0 0 axz 0
a°u] a°u2 a°u3
3 3 3
o] o] (o] (o]
I u du U 3 u 3 u au
x x 0 o —p O ax3 % O
2 1 2 1 2 1
o] (o] o] [¢] o o]
3 u 3 u 3 u 3 u 3 u 3 u
ax1 o aXl aX2 0 ax2 1+ ax3 0 ax3
3 1 3 1 3 1
o
0 a°u] a°u] 0 3°u, ]+a°u . 1+a°u3 3°uy
=Y. X 3
(3.52)
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where

[ 1 I } 2 (]
()7 = [Eyy 2By, 23]

The elements of T are given in Appendix A, Since all the other quan-
tities involved in equation (3.34) are tensors, similar expressions hold

for them also.

ael =T ae (3.37)
set = T se (3.38)
snt = T &y (3.39)
%t = 1% (3.40)

Next, substitute equations (2.64) - (2.66) into equations (3.37) - (3.40)

act = B aq (3.41)
set = Bt &g (3.42)
(sn*)7°s* = s’ 85 ag (3.43)
where B'=738 (3.44) ;f;i E
'
Bs = & (3.45) .
- - b
Finally, the stiffness matrices and the initial stress force vector, ij f;d
equations (2.73)-(2.75), become, -
. o ]
X = f (89" ¢* 8" av (3.46)

<
. ...A._.L;.l )




3.4 Assumptions on Stress and the Transformation Matrix

The following assumptions have been made concerning the local stresses

in the beam:

[ £ 2 2
|'so2] 18331 |30 << |y

: Here the g superscript refers to the local 3y, 35, 25 coordinate system. ;'-.jni
The ng, S§3, and 553 stresses are thus considered small enough to be :'-j*fﬁ
neglected. -;:3

Since the virtual work integral is a scalar, it is invariant under any "’ g

coordinate transformation.

T o]

f 8 El §z dv =[ b _I-Z_T S dv (3.34) .o d
- o

i i

v v

The transformation from local to global coordinates using tensor notation is

as follows:

L _ 4 . . .
Ers = (dp " 2000, * 3) Epg (3.35)
where i = global unit vectors . )
For example,
po_ .2 2 2
By 72 Byt o Bpp t o3 Byt 28y 25 By ®

* 223y ayy B3 + 23, a5 Eyg

Similar expressions hold for Efz and Ef3. A transformation matrix T can

thus be defined relating the local and global strain components:

et = TE (3.36)

....................................
................................




- X,
.; TE_=§1] (3.28a)
ax
. oX
- = a, (3.28¢c)
3z
F Thus, the Jacobian matrix is as follows: U
LN — - ® 4
2 2 2
Z %1 Z %12 7 %13
- 3.29 o ]
> J= a1 42 23 (3.29) .
i %31 %32 %33 SR
) To determine LJ..]’ it is first necessary to evaluate the determinate of the ) B
l.;'fl Jacobian, First, note that D
| 4 s
|3] =72 - (3, x 33) (3.30) e
T g
r:_: But 3 x a3 = a, (3.31) ]
. 3
] 2 L4 )
Thus  |J]|=%2 « g (3.32) o
. SO
and |i|=‘2' (3.33) BRI
® L 4
This expression for the determinant of the Jacobian will prove useful in the ~'..-__*_ o
evaulation of various integrals. 1
DO
» 9
: '-f'_'.-;_ y
- 1
» LI
< 25 !
- |




o - BASREAKAES B IR At s e e o o e A AR e
i:
) N 7 N\
: (5 2
] 3 \_ 3
g or ¢ w2 < N, 7 (3.23)
3 9
9z X
3
[ %) =l "
where  J= Jocabian matrix R
Solving for the desired derivative, ]
() % ‘o
2 2 *
Xy 3 o
4 : {2 o
R ? =g 3y (3.24) o ]
9 3 S
WJ | %2 P
¥ B
In order to evaluate the Jacobian, equation (3.12) is used. O
3 &
L NilE) Koy vy 2t 2 g (3.25) BORas
For straight beams, however, S
P EaeR——
. &
Xo3 = Xop * L 3y (3.260) s
_. <
where ¢ = Length of the beam element - ,
SR
Substituting equations (3.26) into (3.12) and using the expressions for the B
°
shape functions given in equations (3.13) results in T

= 2
X = 10] + 2.(g+]) 3ty a,tza,

Using equation (3.27) to evaluate the derivatives in the Jacobian,

‘1

24 )

N

................. 9

R R T A e L ST S e T T T T T AT T T T T e e e SR R T N . -'.:’
................................................................................

- i AL ST P P LI P S S AR UL SR PR PR WK R PR WU WA WA PR A o SR AT WA R ST SR A i SR WSO I P Sy &)

(3.27)




;:',. _.
-
.'.“ = N*
- Au = N* Aq (3.17) o
where  N* = N* +y Ny o+ oz N (3.18) '_., e
* = .
Bo [N113 0 N2l3 0 N313] (3.19)
* = S
N* = [0 NyD; 0 N,0, O N3D.] (3.20) -
* =
ﬂz (o NE; Q Nzgz g N3§3] (3.21)
Note that N*, N* and N* are 3 x 18 matrices since I, is the 3 x 3 iden- .
-0’ -y =z =3 ‘®

tity matrix and Q is the 3 x 3 null matrix,

3.3 Derivatives and the Jacobian

In order to evaluate the integrals in the virtual work expression, it @
is necessary to evaluate terms that include derivatives with respect to X.
Since the displacements are expressed in terms of the local coordinates, it

is necessary to find an expression which relates derivatives with respect to @

the local coordinates to derivatives with respect to X. This can be done 3:;;5
using the chain rule as follows: &E_}
f...u-.‘u-
r ) B T 3 .
3 X, X, X3 \ '-;vi
2 ag 3E o X,
X aX aX ]
%‘ = ] 2 3 2 ? (3.22) ST
y Yy 3y 3y 'a'XE R
0
3 ax, X, g 5 v
9z 9z 9z 9z 8X3 u;{;
L) L J \ J e
.
o
23 5

.............................................................
..........................
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Ny(8) = 5 € (£ + 1) (3.13¢)
.
In the finite element approximation the displacements within each element l_fj
are assumed in terms of the shape functions as follows: :Elf
3 3 3 K
o - ] o 1 . o, _ . 3. ., ‘
u=r Ni(E) Pug. +y .z N;(8) (°a5-3,) 5+ 2 1_;'.]N,-(e)( a3-3;); (3.14)
3 3 -
AU = 1_1:] N () auy. + I N;(€) (y Dy + z E;) a8, (3.15) ®
Figure 4 shows the 18 degrees of freedom for the 3 node beam element used
» here. The subscript i refers to the appropriate node and the displacements :Q-
EL are expressed in terms of the nodal displacements. Thus, for i = 1,2,3,
3 oy =0y (X)) |
F =05 =0 ‘-0j "o
Agoi = Ay, (501) tif;
ﬁ Ag-i = A8 (501) ,,,,.
- _ °
- 2i =D (%015, 8y, “03) L
=E(° i
Ei = E 0y "0y, 0y) .
Now the displacements need to be expressed in the form of equation (2.10).
To do this, define the nodal incremental displacement vector q as follows: -
.®
T, T T T T T S
Aﬂ = LAHO]; Ag]! AEOZ’ A_G_Z’ AE.03’ A93_| (30]6) :--
Rewriting equation (3.15) in terms of equation (3.16) and using matrix o
]

notation,
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expressions in eq. (3.90) are no higher than 4th order polynomials, a
three-point numerical integration would give exact results. However, these
beam elements allow transverse shear deformations similar to a Timoshenko )
beam. It is well known that when the finite element approximation is ;3;5;
applied to such beams which have a large length to thickness ratio that fiiI{
exact integration results in overly constrained equations which leads to .;i
inaccurate results [36]. One remedy to this situation is to use reduced |
integration [29,30]. Therefore a two point integration (n = 2) was chosen .
for eq. (3.90). For n = 2 the Gaussian integration points are a, = -1A3 ‘o
and a, = 14/3 while Hy = Hy, = 1. Also, from eq. (3.33),|J|= ¢/2 . Thus, g
eq. (3.86) becomes :‘f
"o
2
SR SO (Bg)' C* By + 1, (BT ch By + 1, (B))T ¢ §§1E=aj (3.91) 2
o
The initial stiffness matrix and force vector are calculated in a simliar o
manner. If eq. (3.79) is substituted into eq. (3.48) and the integrals are 'igf?
evaluated as in eq. (3.85), the following results are obtained (again using :;éJQ
2-point numerical integration): ‘
. 2
L J-f] (R Bgy * Iz Bgy + 1y E55)5=a_ (3.92)
J °
Finally, if eq. (3.83) and (3.77) are substituted into the expression for o
the initial stress force vector given in Eq. (3.49) and the integrals eva- ﬁ;ij
luated as above, the result is as follows: :iq
LI 7 J,=E][A (§§)T °Se * 15, (gf)T °§y + L (Eé)héz]g:ai (3.93)
Y
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The element stiffness matrices and force vectors are assembled in the usual
way to obtain the global stiffness matrix and initial stress force vector.
-.- .
®
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CHAPTER 1V .

NUMERICAL TIME INTEGRATION SOLUTION SCHEME - ~ ;1
.o
5_. 4,1 Introduction f
gj3 There are many methods which can be used for the numerical time
ill integration of equations (2.17), (2.22), and (2.75). Generally speakiny, ;.-.,,:
: these methods can be classified as either explicit or implicit schemes.
E For any of these schemes the time variations of q and g are discretized 1< ]
t;_ using an m-step, one-derivative, linear multistep difference operator i. 1
; by g (4.1a)
q = § a,q + At I . q .la
dn+] jeg 1 n-i je_1 1 =n-i
3 o
. m . m .o %
" q.-n‘f‘] = .z C] qn_-' + At z d-i -q_n_-i (4.]b) :'..: - H-
- i=0 - j==] ol
where  q ;= q(t _:) .0 )
- = A, 4) L
o oo --n-..-'_-.;d
Gp-y = alt, ) &

At = time increment = tn+] - tn

In any particular application of equations (4.1), any of the scalar ) ;'

constants, a bi’ c, or di may be zero. If both b_] and d_] are zero then

i
the solution scheme is classified as explicit. If either of b_; or d_, are

nonzero then the scheme is an implicit one and equations (4.1) will '.-
generally be solvable only by an iterative procedure unless the differen-
tial equation is linear. In this case it is possible to solve explicitly

for ﬂn+1‘ -2 4
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Explicit schemes are computationally simplier than implicit schemes
since they don't involve the solution of an implicit equation. However,
with explicit methods it can be shown [31,32] that the stability of the
solution is dependent upon the time increment At. For linear systems, the
maximum time step for a stable solution is related to the highest natural

frequency of the system as follows:

AtiY/mmax (4.2)

Here y is a scalar constant dependent upon the a; - di and Wnax is the highest e

frequency of the system. For nonlinear systems, the natural frequencies of
the system generally change with time as the configuration of the system

changes. Equation (4.2) however, will still be true. For certain "stiff" o )
systems with widely varying natural frequencies, the time step necessary

for stability can be so small that it becomes computationally time

consuming. _5 ;
Implicit schemes, on the other hand, generally have much less -
stringent stability requirements. In fact, some methods (e.g. Newmark's )
method) are unconditionally stable with no time step limitations. The :f“fffj
accuracy of the solution then becomes the only limitation on the time step ;g‘
size. EE?
For the example problems discussed in this research, a three node A jj
beam element is used. For small displacements, this is essentially a .
Timoshenko beam. The natural frequencies for a linear cantilevered beam ?};i E;
modelled by these elements are shown in Tables 1 and 2 as a function of the ;9 :.,i
shear factor chosen. As is obvious from Tables 1 and 2, using these beam .
elements will result in a stiff system, The very high frequencies are asso- fiiﬁifﬁ

ciated with the shear modes of the beam and even through they are only a

I
'
I
o
4
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..................................................
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small component of the beam response, they control the stability of the
numerical solution. Even when very small shear factors are used, the high
frequencies due to shear will result in unacceptably small time steps for
stability. Thus even though we are interested in nonlinear solutions, the
linear solution clearly indicates that an implicit scheme is necessary.

Probably one of the most straight-forward and widely used implicit
schemes is the Newmark method or trapezoidal rule [33]. However, most
structural dynamics problems involve second order differential equations
which include only symmetric matrices whereas the problem here includes a
nonsymmetric gyroscopic matrix C. If the Newmark (or any other strictly
implicit method) is used it would result in having to invert a nonsymmetric
matrix which involves a good deal more computational time than inverting a
symmetric matrix. In addition, many of the terms in the linear and angular
momentum equations are nonlinear ones involving the displacements. It
would be preferable to treat these terms as equivalent "force" terms to be
moved to the right hand side of the equations. So what is really needed is
a solution scheme which treats some of the terms in the equations expli-

citly and some of them implicitly. Such a scheme is the implicit-explicit

split operator method [25]. In this method terms such as the C matrix are
treated explicitly and terms which control the stability of the solution,

such as the elastic stiffness matrix, are treated implicitly. )

4,2 The Time Integration Method

Consider again equations (2.17), (2.22), and (2.75) with all the terms S
to be treated implicitly kept on the left hand side and all explicit terms

moved to the right hand side of the equations.

M(g) G+ B(@) Y * H(9) 8+ Ke(a) 83 = Fy (RouV,20) = Cloua)g (4.3)




PTa) G+ MV, + 6(a) 2= fr (R,V,.0,4,9) (4.8)
(@) T+ 8 Yo+ L) 2= mp (Re,Y ,9,0,9) (4.5)

Now, replace these three equations by a single "generalized" equation as

follows:
Yo 9 * Kgp 295 = I (4.6)
i
where g = d (4.7)
®
- .
Ma)  P(q) H(q)
Mg = LACUR® 6(q) (4.8)
T T
(g ea  I4(g)
L -
EE(Q) _0_ 2 .
Kop = 0 0 0 (4.9)
Kee 2 9 4 "o «1
|2 0 0 R
- ._-.‘_j
( F ; ) ?:if
~q (.q-G’ gG) -C (qG' qG) q ®
B { e i) ; (8.0 o
mr (9 8) i
- J O
The variable d is a "translational” variable the components of which are e :

the time integrals of Vo Similarly, ¢ is a “"rotational” variable the com-

ponents of which are the time integrals of 9. Thus,

¢
s

(4.11)

jo !><

(4.12)
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Assuming all the variables in eq. (4.6) are known at time t = tn, the

equation at time thel = tn + At is written as

Mn+]"n+l n+l n+1 n+l

Y 9% *Xee 4 =g (4.13)
n+l _
where  g."" = q¢ (tp,) (4.14)
n+l n+l .
!G =EG (9-G ) (4.15) 8
n
n+1 +1 - 4
Kee = Kge (a5 ) (4.16) o
n+1 +1 °n+l : i
EG = EG (gg » 9 ) (4.17) ]
N
X
using the trapezoidal rule, U
DR
[ . * . :__1
98+] = gg + % (gg + n+]) (4.18) ::: " \_:
‘-':‘.‘;'-;;-‘-4
.® }
N+l _ "N At een | een+] e
ap = qg + 5 (g + 45 ) (4.19) L
T
Combining egs. (4.18) and (4.19) results in the following: :if . ]
“*ntl _ 4 ntl _ ny _ 4 °n _*n o 5
B T2 (9 - %) -7 9% - 9 (4.20) P
S
Substituting eq. (4.20) into eq. (4.13) yields co E
n+l 4 n+l n 4 °n  **n n+l . n+l _ on+l :L:}>ff
M [(At)z (a5 - 9g) - % - 9] *Kee 29 = Fg (4.21) L
®
. o]
The above equation is the linearized form of a nonlinear equation and can -
be solved by Newton-Raphson iteration. Letting subscript i represent the
j-th iteration number, eq. (4.21) becomes _Q_ ]
.3
s o3




Mn+] [ 4 (gn+l _ n) . _g.'n _ "n] + Kn+l A n+1 - Fn+l (4.22)
=5 o2 sy, %) -2t d% -~ Y% %64 ﬂei 26,
where
n+1 n+l n+1
Aq = q -q (4.23)
$; o Gy 8
Rewriting eq. (4.22) a bit results in the following:
n+l 4 n+1 n+l n+l n 4 °n e
% bor %y, %, Y%, - %) - w9 - g
s kML (Mt gty o ent (4.24)
GEj "G4,y 65 T <Gy
Then, after rearranging a few terms, eq. (4.24) becomes
1 4 n+l n+l n+l n+1 4 n+1 n
[Kn+ + M. '] aq = F -M [ (q -q
=GBy T (at)2 76y © U6y =Gy =G )2 6 6
4 'n ..n
- e—— .G - SG] (4.25)

Using eq. (4.20) and rewriting some of the terms a bit, eq. (4.25) becomes

K& Aq.g:] = Fg (4.26)

where  kx = kM1 4 3yt (4.27)
i =8B T (at)2 =G

B B2 - G (4.28)
1 1 1

Thus by the use of the trapezoidal rule the dynamic equation of eq. (4.13)
has been reduced to the static equation of eq. (4.26). The K§ matrix is

called the effective stiffness matrix and f& is the effective force vector,
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The iteration starts with i = 1 and proceeds until Aﬂgfl converges to within a o
i SRR
required tolerance, that is, until o
n+1 o
Aq ST <
-Gi .
n+ = < Tol (4.29)
B, "3

where Tol is a given tolerance. For the problems considered in this work,

Tol=0.01.

4.3 Starting the Iterations ®

The difficulty that now arises is how to start the iterations, The

simplest way of doing this is to use the state of the structure at time t

]
" N . e,

as a first approximation to the state of the structure at time th+1e Thus, ® 4
n+1 n -:;
n+l _ N S
Y%, "X (4.31) ®
n+l _ n -
Kee, = Kae (4.32)

This approximation is fine for the mass and stiffness matrices since they

n+l

G .
n+l and n+l? None of these terms have been treated implicitly usiny eq.
3 96

change slowly with time, but what about the terms in F which involve

Lt e e b
L, )t

(4.18) as was done for the acceleration and elastic stiffness terms. The
reason for this, as stated previously, was because many of these terms are
nonlinear or involve nonsymmetric matrices. In addition, the stability of

the solution cannot be guaranteed if these terms are predicted using eq.

P
P
Sdod bt

(4.30) [25]. To ensure stability, reference [25] indicates that when a

Ce
FENEN]
W
d,

trapizoidal rule is used for the implicit part, the following explicit

ST e
'. 3 v
e
I I

“predictors" for use in the first iteration of fg+] must be used:
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! = qp + AL (4.33)
~n+l _ n ‘n . (at)Zeen
Q5 =9 * At 95 * 47— (4.34)
Thus,  Fol o g (@, of*h (4.35)
1
Note that eqs. (4.34) and (4.35) are obtained by setting §E+] = 0 in egs.

(4.18) and (4.19). Eqgs. (4.30) - (4.32) and (4.35) thus are used in the

first iteration of eqn. (4.26). The entire iteration process is summarized
in Table 3. The solution scheme described in the previous pages used the
regular Newton-Raphson iteration., A modified Newton-Raphson iteration in
which the 5§ matrix is kept constant throughout the iterations could also
be used. This could result in a computational savings since K{ need be

decomposed only once; however, a larger number of iterations will generally

be necessary than for the reyular Newton-Raphson iteration,

4.4 Spacecraft Angular Orientation Determination

In order to determine the orientation of the spacecraft at a given
time, it is necessry to determine the angular transformation between the
inertial axes and the rotating body axes. As shown in a previous section,
this transformation can be represented in many different ways, including
Euler angles or space-three: 1-2-3 angles. Let this set of three orien-
tation angles be represented by the vector @ which is of course a function
of time. These orientation angles are related to the body axis angular

velocity as follows [34]:

[ {o 3

= !ﬁ o ( 52 ) .SZ ( 4,36 )
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The Me matrix is a 3 x 3 matrix whose elements are functions of the orien-

tation angles 9. For space-three angles,

o' = (0] 0, 0, (4.37)
and - ) . b
€ose, sing, sine, €ose, sino,
= | e
!e = EEEEE 0 €oS 6, c0562 sine, cos 6, (4.38)
0 s1n91 cose1 |
For Euler angles,
T _
e = [v e ¢ (4.39)
sing coS¢ 0
He = €os¢sing -singsing 0 (4.40)
sin ©
-sin¢coso -C0OS$COSH sing

Notethat for time periods when coso, = 0, space-three angles cannot be used
and Euler angles cannot be used if sing = 0., Thus it is necessary to
calculate both space-three and Euler (or any other description) so that if
one formula fails at a given time, the other can be used,

It is necessary to solve eq. (4.36) numerically and this can be done

using the following integration scheme:

0 g +&

il T O 5 Mo (2, ¢ 2ny) (4.41)

Both 2, and 2041 will have been previously calculated. Once the new @ has
been calculated, it becomes possible to determine the direction cosine
matrix C, which relates the inertial coordinates to the body axis coor-

dinates as follows:

.................................
...........................................................
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- -3
L ’
The elements of the ED matrix for space-three angles are given below: Y
CD]] = €0s0, cose3 (4.43a)
CD]2 = sing, sino, €0s0, - sine, coso, (4.43pb) :
CD]3 = €059, sine2 cosoy + sine3 sing, (4.43c) :
@
CDZI = €056, sino, (4.43d)
C022 = sing, sine, §1ne3 + €050, COSO, (4.43e) |
. @ 1
C023 = c0s@y sine, sing; - c0s0; sing, (4.43f) 5 ;;.;f
CD3] = -sine, (4.43g) z;; jif
.® !
(ID32 = sing, €0s0, (4.43h) N
CD33 = €050y C0SO, (4.431) -251:32
o ]
The elements of the QD matrix for Euler angles are also given as follows: e
CDII = COS¢$ COSY - sing COsH siny (4.44a) ’*11 _
LI
CDlz = -sing cosy - COS¢ COsSH siny (4.44p) ' .
C = i sin 4.44c
D13 ne siny ( ) ]
CDZI = COS¢ Siny + sing COS6 COSY (4.44d) @ 1
C = -sin¢ siny + cos¢ COSO COS 4.44e ?f ﬁj
D22 b SNy ¥ cose v (4.44e) SRR
o = -sin® cos 4.44f) ;é , .f
47 .
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CDB] = sing sine (4.449) - j

CD32 = cos¢ sing (4.44n) K] _i

Cpyy = €050 (4.481)

o ]

Once eq. (4.41) has been solved for g, then the gD can be calculated using ]

either Eq. (4.43) or (4.44) depending upon whether space-three or Euler ?

angles have been computed in eq. (4.41). The ED matrix can then be used to '. f

determine the orientation angles that weren't calculated in eq. (6) [34]. ;

For example, suppose eq. (4.41) is used to solve for the space-three angles _é

and then egqs. (4.43) are used to calcualte ED' Since ED must be the same i. ;

for any orientation angle used, the Euler angles could be calculated by '
solving for ¢y, 6, and ¢ in eqs. (4.44). The reverse is, of course, also Tl

true, i.e., given Cy, the angles o,, 0,, and 6, can be solved for in egs. 'b‘;ﬁ;j

(4.43). Table 4 summarizes the entire procedure as well as providing more :QE{éj{j

details on solving for the orientation angles given in the ED matrix.




CHAPTER FIVE
NUMERICAL RESULTS

5.1 Gravitational Forces and Moments

The method developed in the previous sections is now used to analyze
several example problems. The first four examples involve the analysis of
structures which are rotating with large enough angular velocities that
most of the response occurs in a short time period of a minute or less.
Examples 2-4 involve spacecraft which rotate in this fashion. For these
spacecraft, the moment caused by the gravitational gradient is small and
can be neglected. Also, the spacecraft will move very little along the
orbital path during the short time periods which are of interest in these
problems, The spacecraft is thus treated as though it is in a force free
environment (except for any applied control forces). In example 5, the
geometry of the spacecraft is such that moments due to the gravitational
gradient are important and the time periods of interest are relatively
long, up to an hour. Thus it is necessary to obtain an expression for the
force and moment due to gravity.

In Fig. 1, let the inertial axes be located at the center of the earth
C and let 30 be the position vector of the orbiting spacecraft. Neylectingy

any small changes in 50 due to deformations,

ugMR
Fre-—5 (5.1)
Ro
where
Mo = Gravitational constant of the Earth
M = Spacecraft mass

The element body force term eq. (2.43) in the principle of virtual work,

thus becomes as follows:

e o v
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wy = m-Jl - 53 = Damped natural frequency

133 = Total spacecraft moment of inertia

For a given 133, the values of the control constants are determined by the
values of w and Eq which are in turn determined by the desired percent

overshoot and rise time of the response,

¢ T 'J——Lzm 3 (5.23)
™ + 2n® p
#l - g2
ot = ot [Tan™! (« ——9) 4+ 1] (5.24)

rm Eq

where Percent overshoot of the ~esponse

p:
tr = Response rise time; the time at which 8 first equals eref

For p = 0.01 and t. = 5 sec, the following results:

€4 = 0.82609

w = 0.902472 rad/sec
KT = 0.814456 133

KN = 1.49103 133

Using the spacecraft parameters given in figure 20 results in 133 = 15,122
slug-ft?, k; = 12,316 ft-1b/rad, and Ky = 22,547 ft-1b-sec. A value of
BRef = 20° was chosen as the reference angle.

Since the spacecraft is symmetric, only half of it need be modeled.
The motion was studied using both one and two beam elements with a time
step size of At = 0.1 second. In addition, two values of Young's modulus

were used, E = Eo and £ = 0.5 EO. The rotation angle for both the rigid
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5.5 Example 4 - Spacecraft Rotating to a Specified Orientation

In examples 2 and 3 the motion of a rotating spacecraft with
prescribed angular velocity was analyzed. In this example the more
realistic problem of a spacecraft rotating to a specified angular orien-
tation using an applied control moment is considered. The spacecraft is the
simple symmetric dipole pictured in figure 20 and is originally at rest
until a control moment that is proportional to the angular change desired
is applied at the center of the rigid mass. To provide dampiny, the
control moment is also proportional to the angular velocity. The control

moment is thus as follows:

M= -K; (e-eref) K, @
where KT’KN = Control constants

8 = Rotation angle

Bref = Reference angle through which the spacecraft is to be

rotated

If a sensor or some other form of instrument for which pointing accuracy is
important is attached to the spacecraft, it becomes important to have a
good estimation of how 6(t) varies with time.

The rigid body solution for this problem is the usual damped sinu-

soidal response typical of underdamped second-order control systems,

'Edmt 13

= d
SRigid = ®Ref {1 -e [cos wy t +

1 - £q

where w

KT/I33 = Circular frequency

g = Kw/ZmI33 = Damping constant

]
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03 =, sin y cos x (t-To) (5.20c)
I,, -1
where A= (_ZZ____ll) 9, COS Y (5.21)
I

For the elastic spacecraft, the inertias of the rigid body are chosen such
that 122 = I33 > I]] in the undeformed structure. One beam element is used
to represent each beam and a time step size of at = 0.1 second was used in
the numerical integration.

The angular velocities of the elastic spacecraft are compared to the
rigid body case in figures 17-19, The elastic response for 2y s much
closer to the rigid body case than the responses for the 2 and 2,
are. The three dimensional elastic deformations are coupled with each
other as well as with the angular velocities causing a very complicated

response. The state of the spacecraft at any given time would be very dif-

ferent from that predicted by rigid body dynamics alone.
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5.4 Example 3 - Three Dimensional Precessing Spacecraft

In this example the same spacecraft as in example 2 is subjected to
out of plane rotations. As pictured in Fig. 16, the spacecraft is
"spun-up" about a line in the X}=X3 plane by applying a moment during the

time period 0 < t S_To which results in the following angular velocity:
~

9, €OS Y [6(%—)5 - ]5(%—)“ + 10 (#~03] rad/sec 0< t< T,
) 0 )

9 = (5.19a)
Free Variable t > T0
o
~
Q](t) tany 0<t< To
2, =< (5.19b)
Free Variable t > To
-
0 0<_t_<_T0
Qy = (5.19¢)
Free Variable t>T

where y = Angle between the X axis and 9

Values for Qs To gnd y used in this example were as follows:

2, = 0.72552 rad/sec
To = 2 sec
vy = 30°
The rigid body response for t »> T0 in such a situation would be for -4
the angular velocity vector to precess about the X4 axis with a constant iﬁ;
)
precession rate A [35]. For rigid bodies with I,, = 155 > Iy;, the angular o
velocities are as follows for t > T : L4 R
2, = p, cos y = constant (5.20a) ;2
:
f, = sin y sin a (t-To) (5.200) r;:tlﬁ:
.;_:-‘ -..j
IODRCININ
RRIIPARY
]
X 1
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The etfect of the control forces on the rotation angle is illustrated
in Fig. 13. When a control force is applied, the motion will eventually
damp out and the average angular velocity will approach zero. As seen in
Fig. 13, the larger the control force, the smaller the rotation angle,
Figures 14 and 15 show the tip displacements and the angular velocity as a
function of time. Note that the amplitudes of vibration decrease with time
as the control forces are applied as would be expected. One thing should
also be noted in Fig. 15. At t = Ty = 2 sec the applied moment which is

turning the spacecraft is suddenly released. This sudden change or discon-

tinuity in applied moment results in a discontinuity in the accelerations

which shows up as a "kink" in the angular velocity at t = 2 sec. No "kink"

is seen in the displacements'since the velocities are all continuous. "o
In this example it has been demonstrated that it is indeed necessary a;::};ﬂ

to take into account the deformations of the spacecraft to accurately :

analyze the motion.

59
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Another way of determining the effect of offset is to see how unsym-
metrical the motion is. In Fig. 11 is plotted the tip displacement of both

left and right beams for Ip = 10* slug-ft?, my = 100 slug and r, = 15 ft, y

G
The displacements can be seen to be almost the same for each beam indi-

cating that at least for the g(t) given in eq. (5.16) the motion is almost

symmetrical, ’
Next, the effects of these changes on the rotation of the body axes

are considered. The effects on the rotation angle of increasing the rigid i'jiﬁ:

inertia has already been considered in Section 5.2. The effects of » N

increased offset are illustrated in Fiy. 12 which gives the rotation angle

as a function of time for rG = 0 and 15 ft. Note that for both cases the

Al o g

average angular velocity is the same but that the period is larger for the p"

larger offset.

dabebniaineeth

5.3.2 The Effect of Control Forces

In this section the effect of control forces applied at the tips of the »
beams are considered. These forces are proportional to the tip velocity:
Fo=- KT -!T (5.17)

where KT

Control constant

V; = Beam tip velocity

Note that L
L . ) 1

Lr=axiytly (5.18) v ]

Ir= Position vector of beam tip Ai‘f,;

uy = Elastic velocity of beam tip l;f}“ﬂ

= o

T

! -4

Three different values of control constants are considered, KT =0, 5, and

20 Lb-sec/ft. For all three cases, the rigid mass and inertia were Mg =

500 slugs and Ip = 5(10)* slug-ft? with an offset of rg = 5 ft. Once

again, a time step of 0.1 sec was used in the numerical integration,

...................................................................
........
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5.3.1 Parametric Studies

For all the problems in this part, the beam properties were kept
constant and only the properties of the central rigid mass were varied.

The way these changes affect the frequency of vibration of the beams can
thus be determined.

The equations of motion were solved using a time step of At = 0.1 sec.
and one element to represent each beam. The resulting beam periods of
vibration are summarized in table 5. Note that the period increases as the
size of the rigid mass increases. As the rigid inertia grows smaller in
comparison to the inertia of the beam, the problem approaches that of a
free-free beam vibrating in its second mode shape. For a 200 ft. length
beam, the linear second mode frequency results in a period of 2.2 seconds.
As the rigid inertia grows very large in comparison to the beam inertia,
the problem approaches that of a cantilever beam attached to a very large

rigid mass. The linear period for a 100 ft. cantilever is 6.4 seconds. In

Table 5, the periods will vary between these two extremes.

Now, what about the effect of the offset? As can be seen in Table 5,

for a given rigid inertia as the offset increases so also does the period. iff“fdl
However, notice that the change in period is much less as the rigid inertia
increases. Also, to determine the effects of varying the rigid mass while {;j?;ﬁ

keeping the rigid rotary inertia constant, the following was done. For "".

1
Py

IR = 10% slug-ft2 and re = 15 ft, rigid masses of Mo = 100, 500, and 1000

slugs were used. The resulting periods were all the same value of T = 3.3

' Lo e
'y Ml g aa oo 4

sec. indicating that m, has little effect on the period. What was affected

)
‘r

1
v )
ala 4 g 4 g

by mp was the translation of the body axes. These, however, were very

small and never exceeded one foot and thus had very little effect on the

rest of the motion. g‘

(
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5.3 Example 2 - Rotating Spacecraft with an Offset Center of Mass and e

Applied Control Forces

In this example a simple spacecraft consisting of two slender aluminum o

beams attached to a central rigid mass is analyzed (Fig. 10). The rigid

mass has a mass moment of inertia of Ip, a mass of Mo s and a width of 2rc.
A set of body axes, X)s X, and X5 are fixed in the spacecraft and rotate ®
with it. The centerlines of the beams are originally aligned along the

Xy axis and the center of mass of the spacecraft is offset a distance

re along the Xo axis. *
The spacecraft is originally at rest but at time t = 0 a moment is Aj
applied to the spacecraft for T0 seconds such that a given angular velocity » {;:
o

is achieved, This angular velocity was chosen so that the rigid mass would .® )
rotate through a given angle in the X} = Xy plane and then come smoothly to
rest at t = TO. After TO seconds, the applied moment is released and the

angular velocity becomes a free variable. The particular form chosen for o

the angular velocity was as follows: fﬁf;f}5

] rad/sec 0< t< T

o EETRRA

a(t) = (5.16)
- Free Variable t> T

0
For all the problems solved in this example, 9 = /20 rad/sec and T0 =2
seconds. Note that if r. = 0 the problem is symmetric and only one half of o
the spacecraft need be modeled, However, if re ¥ 0, then in general the mo-
tion will not be symmetric and the entire spacecraft will need to be modeled.
The results of this example are divided into two parts. In the first -@
part, a parametric study is done in which the effects of varying the rigid
mass and inertia as well as the center of mass offset are studied. In the

second part, the effect of applied control forces is examined. For both o 4

cases, eq. (5.16) is used during the "spin-up" period of motion.




.....................

Also note that the larger IR is in comparison to IB’ the closer QAvg will be

to the rigid body angular velocity Qe

.4

Now eq. (5.15) can be used to explain the behavior of the beam in %

figures 8 and 9., At t = 1,0 sec the beam is moving away from the body axis <

and thus HDO < 0. At t = 3.3 sec. the beam has reached its maximum displa- FAOPE
L J

cement relative to the body axis and thus HDo =0, At t = 7.0 sec. the 5 $

"

beam is leading the rigid body motion and HDo > 0. Thus the average angu- j:ﬁ

lar velocities pictured in figure 8 are as predicted by eg. (5.15). o
®

Similar results are obtained in figure 9 except that with a larger inertia 3

ratio, all the averge angular velocities are closer to q, as predicted

again by eq. (5.15). Y

e

.

o]

* ]
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where I, = Mass moment of inertia of the beam about the shaft
centerline

Also, let

Hy = H' g (5.11)

The value of IB will change only slightly as the beam vibrates and for the
purposes of this discussion it is sufficient to consider it to be a

constant. The conservation of angular momentum requires that

(Ip + Ig) o, + HDo = (Ip+1g) a+ Hy (5.12)
where HDo = (HD)t=TM0M
Solving for @,
- ]

The angular velocity will be constantly changing, but what will its average

value be? Taking a time average of eg. (5.13),

- 1

Since the beam vibrates about the equilibrium position, (HD)Avg will be ;-iffti
. '~'_».“t.j
small and can be negleccted. Thus, . ]
: * 1

- ] L

Tavg = % * (IR ¥ IB) HDo (5.15) L
.o ]
HDo <0 then QAvg < Q .
HDO >0 then QAvg > Qo -4
‘".1 e
HDo =0 then %vg = % R

............................
......................................

I ST LI LS A B L P B M
RS PN A RIS AR A

o =




o e
Y -

The results for case 2 are presented in figures 8 and 9, which show
variation of the rotation angle of the body axes with time., In figure 8,

IR/IB = 0.5 and in figure 9 IR/IB = 1,0. For both cases, T = 1.0,3.3,

MOM
and 7.0 seconds. In both figures, the "average" angular velocity is

greater than @, for TMOM = 7 and less than 2, for TM = 1.0 while for

oM
TMOM = 3.3 it is about the same as 2, Note also that all the angular
velocities are closer to Q, for the larger inertia ratio in figure 9 than
in figure 8.

In order to understand the behavior of the beam in figures 8 and 9,
consider what happens when the moment support is released at t = TMOM and
the angular velocity becomes a free variable. For t > TMOM’ there is no

longer an applied moment turhing the shaft and the angular momentum will

remain constant. The angular momentum Ha is determined as follows:

d
ﬂA=[p(gxa%-)dv (5.6
v
But %-E=gx£+é_ (5.7

Substituting eq. (5.7) as well as eq. (2.14) into eq. (5.6) and

rearranging,

. .

- . B

Hp = - [ p-;z dv) Q+ ([ p I N* dv)g (5.8) ;

v v R

Using eqs. (2.29) and (2.30) results in '::20 3

Hy=T1qa+H & (5.9) 1?:E¥€ii1

h=l8r2 4

For this particular problem, Hps I and @ are scalars and I
=1+ 1 (5.10)

the

)
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Case 2 - a(t) free for t > T

MOM
. ( t 5 t t 3 -
m 2, (6 (T;) - 15 (Tc-)-)‘* + 10 (T;') ] rad/sec 0<t< T, »
a(t) = £ o, rad/sec T,y <t s Tyow g2
Unknown variable t > TMOM ]

( >
For both cases, values of Qo = n/10 rad/sec and T0 = | sec were used. The A
equations of motion were integrated using a time step of At = 0.1 sec and

m_ one beam element was used, l

The results for case 1 are shown in figures 6 and 7. Fiyure 6 shows

the angular displacement of the tip of the beam as it rotates. This is the R

e

o angle between the inertial X axis and a line drawn from the origin of the Y ’
body axis to the tip of the beam at time t. The body axes and inertial
axes coincide at t = 0, In figure 7 is pictured the orientation of the

B' deformed beam at different times. The dashed lines represent the positions

B . , .
. ‘ R

of the x) body axis at the given times and coincides with the motion of a rigid
beam. The solid lines are the shapes of the deformed beam and the arrows
ﬂ represent the displacement of the beam tip. .1

The linear natural frequency for this beam as given in Table 1 is wyp =

0.547 rad/sec which corresponds to a period of 11.5 sec. Note that wp 2,
:i ' and thus it would be expected that the beam would complete about 1.7 D . 1
L vibration cycles about the rigid body position during the 20.5 sec. it ‘.*
E takes for the shaft to complete one rotation. As can be seen in figures 6 .
:O and 7, this is exactly what the beam does. For the first 6 seconds it laygs [ ] |
o behind the rigid body motion, then for the next 6 seconds it leads the
rigid body motion completing a cycle in 12 seconds. Thus the beam vibrates
back and forth about the rigid body motion. ]
T
’ '
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5.2 Example 1 - A Beam Rotating About a Fixed Axis

In this example a thin uniform aluminum beam is fixed to a shaft which )

is rotating about its centerline with an angular velocity . The shaft has

A a mass moment of inertia of I, about its centerline which is fixed so that e
- A
h.l no translations occur. The radius of the shaft is negligible compared to ®

3

the length of the beam. A set of body axes X}s X5 and X4 are fixed in the
> shaft and rotate with it., At time t = 0 the beam and shaft are at rest and
il, the beam is aligned along the X} axis. The situation is illustrated in —.
figure 5.
Two different cases are considered. In case 1 the angular velocity g

- .
it is a specified function of time for all time. The only unknowns are the @

nodal displacements and velocities which can be found using eq. (2.75) with

Q and 2 given and 10 = !0 = 0. For case 2, the angular velocity is spe-
cified only for t E-TMOM after which it becomes a free variable. The time o
period 0 < t < Tyyy 1s the "spin up” period during which the beam is acce-

lerated from rest to a given angular velocity. For t > TMOM’ the angular

velocity becomes an unknown variable and eq. (2.28) must be used to solve

for it. For each case, the angular velocity during the spin up period is a

smooth polynomial. The two cases can be summarized as follows:

Case 1 - Eyt) given for all time - >
9, [6 (%;)5 - 15 (#E)“ +10 (%;)3] rad/sec 0¢ t< T, ;;i;
a(t) = o

Q. rad/sec t Z.T

0 o]

.........................................................
.................................................................
...............................................
....................................
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The moment due the gravitational gradient can be shown [34] to be as

follows:

=
|

uoM 3u, T 5
e R LR 0
R
0 o J,

where @

£G=1]°T[ p r dv (5.5)

Note that .':G is the instantaneous location of the center of mass.

- ..
.

Ug R
Fg=- (F) PR, (5.3) e

r, L e
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body case and the elastic cases are pictured in figure 21. Note that for E

= Eo’ the response time is still about 5 seconds but that because of the

elasticity of the beams, the peak overshoot is near 10%. Also, it takes o
about 12 seconds before the orientation does not vary more than 1% from 20°.

The more flexible beam with E = %’Eo still has a peak overshoot of 10% but iigfﬁff
the rise time is increased to 5.8 seconds and it takes even longer for the *
rotation to settle down to within 1% of fRef* Figure 22 shows the actual

orientation of the spacecraft for E = Eo at t = 5 seconds. The beam tip

lateral displacement are plotted in Figure 23. Note that both figures *

illustrate the larye deformations which occur.
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5.6 Example 5 - Gravity Gradient Stabilization of a Spacecraft in a

Circular Earth Orbit .

The previous example examined spacecraft with fairly high rates of

rotation during relatively short time periods. This example considers a

R
PR M N . .o
.l 4 . : * - . .
S cdoncdion Setnon dnciessbenianthad afeondstemndatesinafasingd

slowly turning spacecraft over a time period which is a significant percen- M

PN

tage of the orbital period. Consider the spacecraft pictured in figures 24
and 25 which consists of a single long slender beam attached to a rigid

'1- mass. The spacecraft is in a 200 mile altitude circular Earth orbit and at ;-7: ]
time t = 0 the beam axis is at an anyle 8 = 45° to the orbital radius vec-

tor Bo‘ The spacecraft is rotating with an initial angular velocity

W, =]/“0/Rg = 1.1512(10'3) rad/sec., and thus 8 = 0. The gravitational ]

gradient causes a moment (eq. (5.4)) which tends to align the beam axis i ';:
with the orbital radius vector. A control moment Mc is applied at point 0O

in the rigid mass as follows: R

Mc = -LB 8 (5.25)

where L Control constant

In order to determine the values of LB to use, consider the rigid body

problem with small g.

: 1
B+ 2up8 + p%g = 0 (5.26) e

°* |

where LT

3u, I,, -1 DO

0 BRI

p? = ( 22 ll) (5.27) S

R3 I e

0 33 R

f‘ 1

S

:T{‘ ﬁ:

. ..




b A Y

v gt (5.28)

With y = 1, the system becomes critically damped, thus for an underdamped

system, choose
Lg < 2plg, (5.29)

The spacecraft is in a 200 mile high orbit and thus the orbital period is

5458 sec., Two different sizes of rigid mass are considered:

Case 1 Lase 2
mp = 5000 slugs my = 1500 slugs
IR] = 10* ft-1b-sec? IR] = 10" ft-1b-sec?
Ip, = 108 ft-1b-sec? Ip, = 2.43 (10%) ft-1b-sec?
Ipg = 3(10°%) ft-ib-sec” Iy = 3(10°) ft-Tb-sec”

The size and material properties of the beam are identical for each case.
The problems were tested using both a one and two element model with a time
step of At = 10 seconds.

Figures 26 and 27 show the results for case 1 for both free vibration
(no control forces) and a control moment with LB = 4.5(10") ft-1b-sec.
Note that even though fig. 25 indicates that large elastic displacements in
the beam are occuring, the motion of the riygid mass is almost the sames as
that for a rigid body. Thus, for such a large rigid mass, the elastic
displacements of the beam have little effect on the variation of the angle

8.
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The results for case 2 are pictured in figs. 28 and 29. For no
control forces, the elastic deformations in this case do have an effect on
8, even though it generally follows the rigid body case. With the control
force added, however, the motion for g is nearly indentical to the rigid

body case.
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CHAPTER VI
CONCLUSIONS

The numerical results obtained in Chapter V indicate that the method
developed here is capable of determining the time response of unrestrained
flexible structures which are undergoing large elastic deformations coupled
with gross nonsteady rigid body translational and rotational motions with
respect to an inertial reference. The use of an implicit-explicit split
operator numerical integration scheme has resulted in stable solutions for
all the problems tested. In addition, the example problems indicate that
the method is capable of analyzing problems which include the effect of
control forces. Although only beam elements have been used in this work,
the equations in Chapter II are quite general and will apply for more
complicated elements such as plates and shells. Also, the method can be
used to solve problems which include more complicated types of motions such
as spacecraft deployments involving rotations and relative velocities bet-

ween different spacecraft parts.
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Table 1

Natural Frequencies of a Linear Cantilever Beam Modelled by One 3-Node
Timoshenko Element

L/t = 100
Shear Factor 8 wy W, wg @y
(Rad/Sec)
1.0 0.5470 4.502 8417 11,287
0.5 0.5470 4,499 5956 7,981
0.1 0.5470 4.478 2677 3,570
0.01 0.5448 4,259 891 1,132
Table 2

Natural Frequencies of a Linear Cantilever Beam Modelled by Two 3-Node
Timoshenko Elements

L/t = 100
Shear ;E
Fagtor wy Wy wg wy ug wg Wy wg o ':
(Rad/Sec) o
1.0 0.5222 3.533 11.88 49.85 5271 9900 11,287 11,294 A
0.5 0.5528 3.549 11.87 49.39 3763 7007 7,981 7,948 . 4
o
0.1 0.5311 3.524 11.74 46.10 1308 3157 3,570 3,582 S _:3
0.01 0.5312 3.411 10.62 29.94 905 1073 1,132 1,173
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TABLE 3
Summary of Newton-Raphson Iteration Scheme -
o
1. Predict quantities for first iteration, i=l
n+l n RO
q = N
3, 95 °
“n+l °n
%, = 9
i
.on+] 4 ‘n l.n
z - - ®
%6, st 36 - g
~n+l _ N ‘n . (at)2een
G, "% LT f.
o .
’-.' ] * At ae ’ )
n+l _ °n n :
SG’ —&G".Tq—ﬁ «'-"-
N
2. Form Modified Stiffness Matrix and Force Vector o P
1 4 N+l e
KX = Koo (gRT') + —2— M. ( )
.i'd;;q
o~ a -4
* ~n+] °n+l n+l, °en+l T
Lt PR (ﬂai » 3g, ) - Mg (9-G1. ) 3, Fl
3. Solve for incremental displacements S
g }
n+#l _ X1 ¥ o
AgGi = 561 EGi . "'_f
‘J
4, Update or correct the displacements, velocities and accelerations L2 4
n+l n+1 n+1 T
q.- =4q +4Aq RO
=G4 6 =G AR
o
**n+] 4 n+1 n 4 °n *°n DI
%, 95, - %) " ®% - % ]
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TABLE 3

‘n+l ‘n At ,*on+] esn)
q =q, + — (q +q.)
e T R
“n+l - qn+l

‘Gi+l 'Gi+]

‘n+ ‘n+

q = q

S Big

Check to see if iterations have converged

If yes, go to step 6

If no, i =1 + 1 and go to step 2

Update angular orientation (see Table 4)
tn+] = tn+] + oAt

If th < Ynax, go to step 1

If tn+1 > tmax’ stop
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TABLE 4

SPACECRAFT ANGULAR ORIENTATION DETERMINATION

1. Update the space-three angles
If 0= 90°, Go to step 4

Otherwise, use eq. (4.39) and (4.40)

= At
9n+] - gn + 7&9 (gn + EnH)

2. Calculate ED using eqs. (4.45)

3. Calculate Euler Angles

a) If |C33] =1, go to step 3c r-: =
otherwise

8 = cos'] (033) 0< 6<m

C

) tevas o (g 0cazs
C

Then R

{ 120 S
211' -0 if C~|3 < 0 ST

and S

gif C,, > 0
31 =
¢ = {

2n -B if C3] <0

O
o
——
o
-—be
—
(]
w
[¥%
[l
—

= -]

=3
e
-
o
w
w
[




TABLE 4
$=0
a=cos'] (sz) 0<a<
aifC,; >0
w={ ?]'
21r-a1fC21<0

stop
4, Update Euler Angles

Use eqs. (4.41) and (4.42)

= At
el = O 7 Mg (8 *+ 2y4)

5. Calculate QD using eqs. (4.46)

6. Calculate Space-Three Angles
a) If IC]3I =1, go to step 6¢
Otherwise,
v oein=] 1r n : ._::A'.’-.f:
8 = sin™" (Cgy) ~z7i%Z7 S
c N
b) Let a = sin”] (cogzez) - %5_ “i% .
. C
e cin=] 21 m m 1
B =sin"" (53 92) ALY S
Then,
«'V “, ..;‘
a if C33 l 0 _. .
0, = B
] mea if Cyy > 0 -.;:i
gif C., >0
63 - 11 =~ .




TABLE 4

T -

= if C

? 31 = -1

Let o« = sin”! (-Cgp) -

'/\
R
1A
N |

VB

Then
a1fC22>_0

m-a if C22 < 0

Stop

.........................................

....................




TABLE 5

Period of Vibration of the Beams for Various Rigid Body Inertias

of fset Fe (Ft)

15

Ip X (10%), o

Period of Vibration (sec)

1.0, 100

2.5, 250

5.0, 500

20, 2000

2.7

3.3

4.1

6.3

2.8

3.4

4.2

6.4

3.3

3.9

4.5

6.4
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Figure 1

Reference Axes for an Unrestrained Deformable _
Body RS

X
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Inertial Axes
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Figure 2

Beam Large Displacement Geometry
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Figure 3
Rotation Angles

(a) Euler Angles

(2)
Rotate o about £

(1)
Rotate y about X3
(b)

Space - Three: 1-2-3 Angles

Rotate ¢ about ¢
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Figure 3

(c) Body - Three: 1-2-3
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Figure 4

The Three Node Eighteen Degree of Freedon Beari Elenent
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Figure 5

Example 1 - Beam Rotating About a Fixed Axis
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i Figure 7

Large Displacements of a Rotating Beam
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Case 2
IR/IB =

Body Axis Rotation Angle
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Figure 10

Example 2 - A Rotating Spacecraft With an Offset Center of
Mass and Control Forces

12

a(t)

i
_l><

Beam Properties:

L = 100 ft.
A = 6.55(1072) £t
o -3, .4
Iy = I, = 8180107 ft
o = 5.22 slug/ft’
E - 1.44(10%) 1b/ft’
G = 5.54(107) 1b/ft’
rc = 5 ft,

86 ‘, |

................................




RCNER A SN v el Tl Jame 4 <....o\\s-114..<.1.1.1‘41.\{
LI ) el SRR

#4
10°6GL-

N
A

o'oL-

W. (99g) auLg
g

(*34) 3juswsde|dsiqg diy

ﬁ Ly ¥ ¥ T O.o m .. /..
i” 0°S o

0°0l 4

: -

e gt 0°6l
dil ubry e dil 3397 + 3

: y
‘ *314 Gl 40 19S}j0 ue 40; Sjuswadejdsig di] weag ; )
LL 34ndL 4 0°02 B



el

(99S) autl

—————-

U030y ApOg PLbLY

53195430
JuUa49441q oML 404 3(buy uoLlejoy sixy Apog

2L a4nbyLy

AL e o o
PR A
Sl

ot

0¢

(s@aubag) a|buy uoriejoy

Ce

oY

0§

Yr, .1.

—tln s an ety

vy

WL



Ty C SRR AL B Y \ABIecr v e he v iaes S g se s aiaters
. L P oot ] . . ‘v
? . . 3 ’ L] . .
i L I ()
H . M A AN
b . KR
> . . « .
o . .
ot ty
[ ] ® S o ® [
N \ Aoy e . 4 P
.
L
.

w. (03g) auL)

5 Lol 6 2 L 9 5 p £ 2 L 0
3 L] T
2 !
.’ _
. |
X uo130,] Apog ] ol o
» Gy
o
‘ S
=
>
: @, ]
{ o0z ® @ "
= @ .k
, i :

$393403(

(

91buy uoijeloy SLXy ~pog -

€1 d4nbLy .




v

T —

P

008¢

(935) auwiy

0002

JusuB|3 | Y
30404 {043U0)

00§ 1L

A ,v e e .J,-.—‘ Al ..\ v w.nﬂ‘* N
. Coee H ’ e ey

. 1

. ~
:4;..»..

0001

00S

squawall Z +
JUBWA ] | e
32404 |043U0) ON

1 asey - juawade|dsiq di) weag

(2 94nbL4

-

08L-
091~

ovlL-
0clL-

oolL-
08-

09-
ov-
0Z-

0¢

ov
09

08
001
0clL

ovl
091
081

{34) Jusuwdde|dsig di] |e4d3e]

103




w————

R Sy

SJUBWA|I Z - 3se) J13sei] e
Juswa|] | - Ise) d13sel3 +
82404 |043U0) ON
ase) Apog pibry

000¢ 00S¢

00§

1
4~

JuaWd 3 |
asey o1se|y ¥

39404 1043U0)
ase) Apog pibry

| ase) - 9 9buy uoLieloy

92 3anbi4

0§-

0p-

0€-

0¢-

oL-

oL

0¢

o€

oY

0S

(s@aubag) 9 a|buy uoLjeloy

102




L 2es snm nan

Bea

L Rty S ST A S e Sy SN g v = RS i A - S A A ASaiL S A S

Figure 25

Spacecraft Geometry
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m Properties: Rigid Mass Properties
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Figure 24

Example 5 - Gravity Gradient Stabilization
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Figure 22

Spacecraft Orientation at t = 5 Sec

Orientation
at t =5

Orientation
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Figure 20
i Example 4 - Spacecraft Rotating to a Specified Orientation
*2
L
= +\ =t X.'
» N
6= 6
" 6 = 6(t) Ref
Beam Parameters:
- L = 50 ft
" ] A = 0.02182 ft*
. I =1 =3.0419010"% ft? )
. yy 2z :
o = 5.22 slug/ft’ k
£, = 1.44(10%) Tb/ft’ ]
_ 7 3 ®
) Go- 5.54(107) 1b/ft _1
Rigid Mass Parameters: RIERN
mp = 50 slugs
. _ _ 3 _ 2 o N
) IR = IR = 10" slug-ft o |
11 22 3 ' .
Ip. . =2.5(10%) slug-ft’ R
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Figure 16

Example 3 - Three Dimensional Precessing Spacecraft -

Beam Properties: Rigid Mass Properties:

= 6.1010%) slug-ft
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2z s 22
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X
I
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-
I
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APPENDIX A - ORIENTATION MATRICES AND VECTORS

Let a,, a,, and 2, be a set of mutually orthogonal axes fixed in the °
undeformed beam, centered at the centroid of the cross-section with
}h a, tangent to the longitudinal axis of the beam. Also, °e] °92, and -.~
°e3 represent the space-three 1-2-3 orientation angles of the beam. Let .
dij and &4 be the 1j'" element of the matrices D and E respectively. Then
these elements are as follows for k = 1,2,3. -'.
dy = (sin°e2 cos°e] cosc’e3 + sinoe] s1‘n°e3) ay * (sinos2 sin°e3 .
cos) - sin®, cos®,) 3y, + c0s%, cos°, a3, (A1) ,
. @
dy, = sin®8; cos’s, cos®8y a; + sin’s, sin°e, cos 8, 3y - |
sin®e, sin’s, a3, (A2) '
de3 = -(sin’s, s1‘n°62 sin®8; + cos®8, cos°93) ay + (sin°e] sin°e2 .’:ﬁ-
cosc’e3 - sin®, cos’s)) 3y, (A3)
ey = (-sin°) sin®6, cos®8; + sin8y coss;) a, - (sin%; sin%, ...N
sin°e3 + cos°e] cos°e3) 3y, - sin°e] cos°e2 ag, (A4) o
e, = €058 cos’s, cos®83 a;, + €058 sin’s, cos 8, ay, -
5in°8, cos®e, ay, (A5) .
€3 = (-cos®, sin®s, sin®85 + sin®s, cos °85) ay + (cos%, s1‘n°e2
cos%; + sin°s, 5in°85) 3, (A6) ‘
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Also, the change in directional axes is as follows:
For k = 1,2,3

°| - : 0 . 0 o} o) : O
( a, - a2)k = (sin 8) sin"e, cos 85 - cos 8 sin 03) ay t

. O : O - 0O (o] o]
(sin 8) sin"6, sin"65 + cos e, cos 0y - 1) 3, *
. O (o]
sin"e) c0s°8, a5, (A7)
o_, _ o ;. O o ) . 0
( ag - a3)k = (cos 8) sin"6, cos 65 + sin"6, sin 63) ay, t
(o] : .0 s O : O (o}
(cos”8y sin 8, sin"e3 - sin"e; cos 63) 2y +
(cosoe] cos°e2 -1) ay, (A8)
Note that eqs. (A7) and (A8) are related to the U and E matrices as
follows:
3 O. - . -
"o { a, - a2)K = dik ik =1,2,3 (A9)
i
9 O_, - 3 -
o0 ( ay - a3)k = e ik =1,2,3 (A10)
i

Finally, the transforination matrix T between local and global stresses

and strains is as follows:

2 2 2
a 2y 213 2a},2ay, 2ayy3y4 2ay,83)3

-
]

2311851 221,85, 2813853 8)135,48),35)  8)18,3+8133,)  3)53,3%3133,,

L2311a31 23)5339 23y3333 d1133,%3),383) 3))333%3 333 8},333%3)33,,

-

(A11)
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APPENDIX B
ELEMENTS OF MATRICES OF WHICH THE STIFFNESS MATRIX IS COMPOSED

k

The D~ Matrix
0 = Dgle) +y Di(e) + 2 D5(e) k= 1,2,3
The gg, g;, and g§ are partitioned into three 3 x 6 submatrices as follows:
% = 1005y, (05), (0%)5] (81)
ob = (@), (@), (25)5) (82)
08 = [(2%), (0%, (245 (83)
Now, let (drs)i and (ers)i be the elements of the Qi ad.gi matrices

respectively (see Appendix A) and N; be the ith shape function, then for

ik =1,2,3 S
[ an, ]
- 0 0 0 0 0 -
. . AT
(By)3 = 0 0 0 Nyldy)y Nildyp)y Nyldyq)y | (BA)
0 0 0 Nileyy)y Nyleyp)y Nyleyz)y T
R A )
aN, ] S ]
0 —5% 0 0 0 0 R
2, Ne(d e No(d ). N.(d . ¥
(Dgls = 0 0 0 TN Tt Mgy | (B )




B Z2dT AP Aras e RIS Suei B v Bl e Jueuinstn Beau Jhan Sieh S — - - — TV CaNS S A5 b 3

0 0 5t 0 0 0
| 3
| (03); = 0 0 0 Ni(dgy); Nildgp); No(dg); |(86)
; 0 0 0 Nilegy); Nylegr)y Niless)y
) L .
, B aN; aN, aN, 7]
- 0 0 0 —rld )y —d%2) i —5(dk3)
(9;)1 = 0 0 0 U 0 0 (87)
y 0 0 0 0 0 0
L -
™ i aN, aN, N, 7
0 0 0 —5ler) i () § —ge(eka);
(Qﬁ), = 0 0 0 0 0 0 {(88)
0 0 0 0 0 0

The D_ Matrix

)
First, rewrite eqs. (3.64)-(3.66) as follows for k = 1,2,3:
. 2°uy
" 52 o T Y Moy * 2 Moy (89)
)
a°uk
= h (B10) o
ay Yk . :‘.
B B
' a°uk ST
) = h B11 N
: 3z Zk (B11) o
. 109 R
e e e e e S i e e




Note that J~

will be a constant.

L]
L
)
where .
3 N R
h, = i o L
i=] ok ok 4 ) _ j
o
3 N, g ]
"oyk if] Tat (Cag - )5 (B13) I
3N o S
"oz 5, ot (Pa3y - 335 (B14) ‘
3 (o)
nyk = 151 Ni(e) (Cagy = ap); (B15) "o
3
ETI A ) (Pa3 - ag); (816) - |
o
Let the inverse of the Jacobian matrix be represented as follows: ~5;j£};
i 7 R
-l T
Jd = L2 L22 Loq (B17) o
L3y L3z L33 {1;;5;;
h - ‘..‘_t_"'._— S
]
] 3°u B

using eq. (55) as follows:

Finally, by substituting the derivatives in eq.

y
Bty Ty te
Ly Mok * Li2 My
A (]
L oyk
le hozk

..................

Thus the derivatives {—y

4
Y

+ Lj3 h

kyj = 1,2,3

} can be written

(B13)

(B19)

(B20)

(B21)

(B18) into the expressions

...................

...........
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for Qe given in eq. (3.52), the elements of Qeo’ P-ey’ and P-ez can be given as B
follows: 4
- e d
—_ m @
o o o - {
o] o] o . K
0 212 0 0 1+ L99 0 0 239 0 -
° o o -
~-€0 o o) o [o] [} o]
g My 0 T, Ty O 3, i3 0 4
o o o o o o) L "
3 0 My Ty 0 1 MWigy O 43 S
o o o o) o o N R
0 113 2]2 0 9.23 1+ 2,22 0 1+ 2,33 132 T 4
L. - ® ]
(822) R
4
[y y y - 1
y y y
y y IR
) 0 0 213 0 0 293 0 0 233 R
—ey y y y y y "o
2. T O 20 "1 O 32 T3 O .o
y y y y y T
13 0 i TRz 0 T Thy 00 iy o
y y y y y y
|0 13 "2 O 3 T2 0 33 T3 -
(823) o]
4
[ 2z z z ] o
1 0 0 21 0 0 231 0 0 i_.-_.;
r4 z 2
0 219 0 0 299 0 0 230 0 )
0 0 ‘e 0 o ? 0 0 %z S
. 13 23 33 -
-2 ¥4 b4 ¥4 z 4 ¥4 k
212 O 22 1 O 3 i3y 0 \
z z z z z z
913 0 1 T3 0 21 %33 0 23
4 r4 4 4 4 4
| 0 Y13 Y2 O 23 Thp O B33 32
(B24)
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APPENDIX C

DETAILS OF MATRICES AND VECTORS USED IN THE MOMENTUM EQUATIONS . ._ )

)
LINEAR MOMENTUM EQUATION
The Element P Matrix (18x3)
-~" P
P, =[ o N+T av (c1) :
Ve ’

Substituting eqs. (3.18) and (3.13) into eq. (C1) and carrying out the volume P

integral results in the following 18 x 3 matrix for P:

pAg

By = 232 (150 415 0 1 0] (c2) !
]
where 2 = Beam element length '
13 = 3 x 3 Indentity Matrix
0 =3 x 3 Null Matrix *.”

The G Matrix (3X3)

<
<
P

gt - a

[
-
|
©
&
a
<
+
©
o
|:
(=%
<
+

}
f p AU dv (C4) .1‘

v v " :

Now, R .q
gl = p I, dv = Matrix of Center of Mass (C5) .4_.;‘.."::{

- Position at t = 0 SR

In many cases go = 0. Substituting eqs. (3.14), (3.17), (3.18)-(3.21) into

eq. (C4) and integrating over the volume results in the following: ;:‘:
"

112 SRR

)

<Y




T -
6 =6 + M, (C6)
where M = Total Mass
u =) R 1.7 o
Us = w o(°u + au)dv = g P° (°q + &9) (C7)

v
Note that Ys is the change in the center of mass from the initial unde-

formed state. Eq. (C6) can be simplified to eq. (C8). Note also that the

use of the P matrix is after its assembly.

G = MT, (c8)
where  To = To + g (C9)
g, * %foso av (c10)

Ic=§2j p:dv=§2f p(ry, + CAu + au) dv (ci1)

v v

Using eq. (C7) and (C10), eq. (C11) becomes

o
s

fo=m?r (C12)

ANGULAR MOMENTUM EQUATION

‘
.

C e

PR
S0

. o« .o

POW vy )

The lJ Matrix (3x3)

PP

o T2 dv (C13) R
L o

v R Vi R
=)
S
13 T
-------------------------------- T e T T e T e e T N T T
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In these integrals, VR represents an integral over any rigid parts of the
body and the summation is over all the elements. The position vector of a
general point in the cross section of the ith element can be written as

follows:

- O (- | oL
L= T+y3,+272°3, (C14)

where °c = °r + °u (Cc15)

As before, ﬂgo represents the undeformed position vector of the cen-

terline of the beam element and °u_ is the initial displacement vector of

0
the centerline, The Au vector is neglected in these integrals since it is
small and the terms are of second order. Using egs. (3.12) and (3.14), °r

is written as follows:

(C16)

T
here °u'. =T[° ° °
! =0J [ q°6j-5 906;-4 qoaj_3] (C17)

Note that °u

Yoj are the X1s Xos and X3 displacements of the jth node.

Similar expressions exist for °a) and °aj as follows:

3

°a, I N; (&) °2;; (C18)
J_
3

o 0 . LPY

I N;(e) °a3, (C19)

The °géj and °géj terms can be evaluated using eqs. (A7) and (A8}.

PO
N . » ~j

0
- -‘A-‘—a—-‘-' .

v .
RN R I
tataa’a’a A
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Thus, the finite element approximation to r is found by substituting eqs.

(C16)-(C19) into eq. (C14):

w

= ° ° 0.1 o,
r Jfl Nj(E) ( 99N + Y +y 4, +z .a_3)j (C20)
If eq. (C14) is substituted into eq. {C13) and the area integrals carried

out, then

N
- o2 ot ] 2 — 2
I -lR - 1.__2_:] [pAif L de+o 1221] (°ap)” de + o Iy_yi[ (oié) de]
L

L., L. i

1 1 1 (CZ])
The lR matrix is the inertia matrix for the rigid parts of the structure
which is found in the usual way. The integrals along the length of the
beam in eq. (C21) are evaluated numerically. They can be done exactly

using three point Gaussian integration:

=2 b 3 =2
°r” de = I°ri(g) H (c22)
2 k’ Tk
L
T 4 3 T2
°a;? de = — LT (g B =23 (c23)
L

i

The °F(g, ) and °a'?(g, ) matrices can be evaluated by using eqs. (C16) -
- 5k - K

(C19) with £ = §,.

The Element H Matrix (18x3) o |
H [ o L N* v (C24)

@
Ve 9
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Substitute eqs. (3.18) and (C14) into (C24) and integrate to obtain the

following for the ith element:

T_ o2 o7 N* °3!
H pAif LE‘SdQ+pIZZi/ 22ﬁyd2+p1yy1'f g3_N_;d£

L L, L.
1 1 1 (CZS)

Once again eq. (C25) is evaluated numerically as follows:

.3
T _ pp'1 o o=
Ho= o B DERING () + 1, 3y g8 (5) + 1y 0 B35 N (£ ) M,
(C26)
The H matrix is assembled in the usual way.
The Mcent Vector (3x1)
Meent p£&2£dv= pﬁg_rdv+1_z] pr 9 r dv (C27)
v VR vi
Let Meentp = [ p L8 rdv (c28)
R

It can be shown [34] that the eq. (C28) is equivalent to the following:

- - - 2-2 - -
Meentg)y = Try, 193 Iyz 1% = Trpy (92=03) = {Ipyy=Ipqs) %%

(C29)
- - - 2-2 - -
Meentg)2 = Trog M1% = Iryp % = Iryz (%9 = Upgs=lpyy) %39

(C30)

...............................................
...................................
---------------------------------------------




- _ _ 2.2y .
(Meentg!3 = Tryg %% = Ippy M9 = gy, (R=%) = (Ig  =Tpos) 919 _
L] ’
(C31) o
Note that IRij are the inertias of the rigid parts of the structure. The .
rest of Mcent is found as in the previous sections, i.e.,, substituting eq. ;fl T
®
(C14) into eq. (C27) and integrating. Thus, J
N et 3 — -2 ]
- [+ o
Meent = !centR oL { L [A; role) 27 °rlg) :
i=1 k=1 )
pul Y 1 o —=20Th
iy Te TRE) + Ly TBIPTM ] (€
. 4
The M., Vector (3x1) S
N . A
Meor = L 2 praudy (C33) R
i=] . @ !
Vs
Within an element, _u_ can be found using eq. (2.14): '.::_f:::'_.":'_'_l:
:.,.. .. -..:
. . *o - . N N . - . . . R, .
us=Ngq-= (N +y N +2ZN)g=u,+yu +2u (C34) 3
-]
where .
L] *. . ‘
u, = N5 g (C35) :
. - . C -]
u =N (€36) o ]
yu=Ng (C37)

N
o atatanal

P
B_m e

B
PR
a s

...................................

...............
..........................................................




Substituting eqs. (C35) - (C37) as well as eq. (C14) into eq. (C33) an
integrating results in the following expression for Mcor‘:

N 3 .
M = f (o] {kf] [A1 OL(Ek) ﬂ‘o(gk)

=cor i

——
gy

* 1y °§}_(£k)§_ﬁy(5k) + 1. °§§(gk)§QZ(sk)]Hk} (C38) "o

1 4 4 L}
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APPENDIX D

,

v

: DETAILS OF THE MATRICES AND VECTORS RESULTING FROM THE INERTIA TERM IN
= THE PRINCIPLE OF VIRTUAL WORK

The Element Mass Matrix M (18x18)

F
I=
NG
©
=
'*

-
=
l)(b
a
<
A
o
s
S

Substitute eq. (3.18) into eq. (D1), evaluate the matrix products and

integrate over the area to obtain

ﬂ:ﬁo:fﬂy«»ﬂz (D2)
where - oem
o
M o= o A[ T Nx dg (D3) o
~0 -0 -0 ST
L R
L
_ T
M=o Izzf NN de (D4) |
L °
= )
HZ P Iyyf N _liz dg (D5) .
L )
These integrals can be evaluated analytically using the expressions for ﬁ;,
jl_; and N%* in egs. (3.19) - (3.21). Tne results are as follows: e
119 o
e e S e T e e D D e e e e e e




——y

Jz

where

AR N Al S S U g S S S A SSRL VI S-S e

©°
o3
o

I

23
8

lo
)
—

413

jo
o

151

SYMMETRIC

o

o

:
40,0,

o ©

SYMMETRIC

{=

0

4ETE

Ic 1o 1o

SYMMETRIC

= 3 x 3 Identity Matrix

= 3 x 3 Null Matrix

lo

([=]

1o

ARl Aot By ek A B )

o o le Il

e o o o lo

o j1©o jo |jo o |o

T
2EoE

T
4EqE,

(D8)




The Element Gyroscopic Matrix C

C- zf o N*T T N+ dv (09)
m v

e

Using es. (3.18) in Eq. (D9) and evaluating the integral as above results in:

£=£°+£y+£z (D10)
' g o @ o 2 0
0 o 0 )
pAg 160 0 i 0
Co = - - - (D11)
=0 " T5 0 0 0
SYMMETRIC -
4 9
0
b - —
9 0 9 0 9 0 :
40,80, O 20;%, O -Dy@by \,
pl__2 0 0 0 o] e
= _rszz__ - T‘— T" (D].Z) h . A
- 160,20, 0 20,90 R
SYMMETRIC RN
9 0 DR
= R
i 40390 .
R
o o 9 o o o | 8
. . N !
4E EE.] [} ZE}EE.Z g 'E{@E - . < .‘-._‘:
ol 2 Lo I R o13) »
¢, = —%L D13 <
= 65,3, O 2EI8E P
SYMMETRIC
8 9
4ETE

..............
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-----------------------------------
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The element Force Vector Due to Centrifugal Force F.

‘e v

P ‘e A
B . o
Ala'ata alal el AL il

But by using eq. (C14) and (C15), T

= © [ o1 ] )
£0+Eo-£0+20+y£2+223 (D]S) .

. As in Appendix C, use numerical integration to evaluate eq. (D14): ;.

T e ~ ]
Fo= 2 I IANTe) B orlg) + 1y, X Te) B °ay(g)

H~w

* Ly M) T a1 Ky (016) L

R
1

’
e . A

' W . . .
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